Beamforming

Modellieren von Beamforming für drahtlose Kommunikation, Radar, Sonar, medizinische Bildgebung und Audio-Array-Systeme

Beamforming ist ein Verfahren zur Verbesserung des Signal-Rausch-Verhältnisses der empfangenen Signale, zur Eliminierung unerwünschter Störquellen und zur Fokussierung der übertragenen Signale auf bestimmte Orte verwendet wird. Beamforming ist von zentraler Bedeutung für Sensor-Array-Systeme, einschließlich drahtloser MIMO-Kommunikationssysteme wie 5G, LTE und WLAN. MIMO-Beamforming in drahtlosen Anwendungen kann auch zur Steigerung der Datenstromkapazität zwischen einer Basisstation und Benutzerelementen verwendet werden. Optimierungsbasierte Beamforming-Verfahren werden in modernen drahtlosen Kommunikationssystemen immer beliebter. Dazu gehört das hybride Beamforming, bei dem Optimierungsverfahren zur effizienten Aufteilung von Systemarchitekturen zwischen Basisband- und HF-Systemen zum Zweck der Kostensenkung verwendet werden, um Kosten zu senken.

Mit MATLAB generiertes Beamsteering für ein Phased-Array-System.

Beamforming-Anwendungen

Beamforming wird weitläufig in Radar-, Sonar-, medizinischen Bildgebungs- und Audioanwendungen verwendet. Beamformer können zur Bündelung der von einem Sensor-Array übertragenen Signale in eine bestimmte Richtung eingesetzt werden. Bei empfangenen Signalen an einem Sensor-Array verbessern Beamformer die Erkennungsleistung durch kohärentes Addieren der Signale über die Elemente des Arrays. Herkömmliche Beamformer haben feste Gewichtungen, adaptive Beamformer hingegen haben Gewichtungen, die auf die Umgebung reagieren. Bei schmalbandigen Signalen wird Beamforming oft durch Multiplizieren des Sensoreingangs mit einem komplexen Exponentialwert mit der entsprechenden Phasenverschiebung erreicht. Bei breitbandigen Signalen ist die Führung nicht mehr eine Funktion einer einzelnen Frequenz. Der Vorgang muss daher möglicherweise in mehreren Frequenzbändern durchgeführt werden.

Beamforming-Leistung

Die Entwicklung eines Beamformers und die Bewertung von Algorithmusalternativen sind der erste Schritt zur Erreichung der erforderlichen Leistung eines drahtlosen Kommunikations- oder Radarsystems. Zur Beurteilung der Leistung muss der Beamformer in ein Modell auf Systemebene integriert und über eine Sammlung von Parameter-, Führungs- und Kanalkombinationen bewertet werden. Eine weitere Herausforderung besteht darin, auf Systemebene Kompromisse zwischen der Durchführung des Beamforming im Hochfrequenzbereich (HF) und/oder im digitalen Basisbandbereich zu schließen. All diese Aufgaben sollten am besten zu Beginn des Entwurfsprozesses durchgeführt werden.

Beamforming mit MATLAB und Simulink

MATLAB® und Simulink® stellen ein vollständiges Produktsortiment an Modellierungs- und Simulationstools und Algorithmen zur Verfügung, die für den Entwurf, den Test und die Integration von Beamformern sowie für die Durchführung vollständiger Analysen auf Systemebene benötigt werden. Sobald Sie den Beamformer entworfen haben, können Sie ihn mit MATLAB Coder™, Simulink Coder™ und HDL Coder™ in C Code oder HDL in Ihrem Endsystem bereitstellen.

To learn more about beamforming, see Phased Array System Toolbox™ and Communications Toolbox™.


Beispiele und Anleitungen

Antennen- und RF-Modellintegration

Mustersynthese und adaptives Beamforming

MIMO-Kommunikationssystem

Sonar und Akustik

HDL-Bereitstellung für Beamformer

Siehe auch: Drahtlose Kommunikation, FPGA-Design und -Codesign, OFDM, Massives MIMO, Kanalmodell, Radarsystemdesign, 5G-Drahtlostechnologie, Radarsystementwurf, Videos zum Radarsystementwurf