Main Content

jacobiSN

Jacobi SN elliptic function

Description

example

jacobiSN(u,m) returns the Jacobi SN Elliptic Function of u and m. If u or m is an array, then jacobiSN acts element-wise.

Examples

collapse all

jacobiSN(2,1)
ans =
    0.9640

Call jacobiSN on array inputs. jacobiSN acts element-wise when u or m is an array.

jacobiSN([2 1 -3],[1 2 3])
ans =
    0.9640    0.6721    0.5773

Convert numeric input to symbolic form using sym, and find the Jacobi SN elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiSN returns exact symbolic output.

jacobiSN(sym(2),sym(1))
ans =
tanh(2)

Show that for other values of u or m, jacobiSN returns an unevaluated function call.

jacobiSN(sym(2),sym(3))
ans =
jacobiSN(2, 3)

For symbolic variables or expressions, jacobiSN returns the unevaluated function call.

syms x y
f = jacobiSN(x,y)
f =
jacobiSN(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiSN(3, 5)
fVal = double(f)
fVal =
    0.0311

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
0.031144778155397389598324170696454

Plot the Jacobi SN elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiSN(u,m);
fcontour(f,'Fill','on')
title('Jacobi SN Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes object. The axes object with title Jacobi SN Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi SN Elliptic Function

The Jacobi SN elliptic function is sn(u,m) = sin(am(u,m)) where am is the Jacobi amplitude function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b