Main Content

jacobiCS

Jacobi CS elliptic function

Description

example

jacobiCS(u,m) returns the Jacobi CS Elliptic Function of u and m. If u or m is an array, then jacobiCS acts element-wise.

Examples

collapse all

jacobiCS(2,1)
ans =
    0.2757

Call jacobiCS on array inputs. jacobiCS acts element-wise when u or m is an array.

jacobiCS([2 1 -3],[1 2 3])
ans =
    0.2757    1.1017    1.4142

Convert numeric input to symbolic form using sym, and find the Jacobi CS elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiCS returns exact symbolic output.

jacobiCS(sym(2),sym(1))
ans =
1/sinh(2)

Show that for other values of u or m, jacobiCS returns an unevaluated function call.

jacobiCS(sym(2),sym(3))
ans =
jacobiCS(2, 3)

For symbolic variables or expressions, jacobiCS returns the unevaluated function call.

syms x y
f = jacobiCS(x,y)
f =
jacobiCS(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiCS(3, 5)
fVal = double(f)
fVal =
   32.0925

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
32.092535022751828816106562829547

Plot the Jacobi CS elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiCS(u,m);
fcontour(f,'Fill','on')
title('Jacobi CS Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes object. The axes object with title Jacobi CS Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi CS Elliptic Function

The Jacobi CS elliptic function is

cs(u,m) = cn(u,m)/sn(u,m)

where cn and sn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b