Main Content

jacobiCD

Jacobi CD elliptic function

Description

example

jacobiCD(u,m) returns the Jacobi CD Elliptic Function of u and m. If u or m is an array, then jacobiCD acts element-wise.

Examples

collapse all

jacobiCD(2,1)
ans =
    1

Call jacobiCD on array inputs. jacobiCD acts element-wise when u or m is an array.

jacobiCD([2 1 -3],[1 2 3])
ans =
    1.0000    2.3829 -178.6290

Convert numeric input to symbolic form using sym, and find the Jacobi CD elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiCD returns exact symbolic output.

jacobiCD(sym(2),sym(1))
ans =
1

Show that for other values of u or m, jacobiCD returns an unevaluated function call.

jacobiCD(sym(2),sym(3))
ans =
jacobiCD(2, 3)

For symbolic variables or expressions, jacobiCD returns the unevaluated function call.

syms x y
f = jacobiCD(x,y)
f =
jacobiCD(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiCD(3, 5)
fVal = double(f)
fVal =
    1.0019

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
1.0019475527333315357888731083364

Plot the Jacobi CD elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiCD(u,m);
fcontour(f,'Fill','on')
title('Jacobi CD Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes. The axes with title Jacobi CD Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi CD Elliptic Function

The Jacobi CD elliptic function is

cd(u,m) = cn(u,m)/dn(u,m)

where cn and dn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b