Main Content

jacobiNS

Jacobi NS elliptic function

Description

example

jacobiNS(u,m) returns the Jacobi NS Elliptic Function of u and m. If u or m is an array, then jacobiNS acts element-wise.

Examples

collapse all

jacobiNS(2,1)
ans =
    1.0373

Call jacobiNS on array inputs. jacobiNS acts element-wise when u or m is an array.

jacobiNS([2 1 -3],[1 2 3])
ans =
    1.0373    1.4879    1.7321

Convert numeric input to symbolic form using sym, and find the Jacobi NS elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiNS returns exact symbolic output.

jacobiNS(sym(2),sym(1))
ans =
coth(2)

Show that for other values of u or m, jacobiNS returns an unevaluated function call.

jacobiNS(sym(2),sym(3))
ans =
jacobiNS(2, 3)

For symbolic variables or expressions, jacobiNS returns the unevaluated function call.

syms x y
f = jacobiNS(x,y)
f =
jacobiNS(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiNS(3, 5)
fVal = double(f)
fVal =
   32.1081

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
32.108111189955611054545195854805

Plot the Jacobi NS elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiNS(u,m);
fcontour(f,'Fill','on')
title('Jacobi NS Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes. The axes with title Jacobi NS Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi NS Elliptic Function

The Jacobi NS elliptic function is

ns(u,m) = 1/ds(u,m)

where ds is the respective Jacobi elliptic function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b