Jacobi DS elliptic function
jacobiDS(
returns the Jacobi DS Elliptic Function of
u
,m
)u
and m
. If u
or
m
is an array, then jacobiDS
acts
element-wise.
jacobiDS(2,1)
ans = 0.2757
Call jacobiDS
on array inputs.
jacobiDS
acts element-wise when
u
or m
is an array.
jacobiDS([2 1 -3],[1 2 3])
ans = 0.2757 0.4623 -0.0079
Convert numeric input to symbolic form using
sym
, and find the Jacobi DS elliptic function. For
symbolic input where u = 0
or m = 0
or
1
, jacobiDS
returns exact symbolic
output.
jacobiDS(sym(2),sym(1))
ans = 1/sinh(2)
Show that for other values of u
or
m
, jacobiDS
returns an
unevaluated function call.
jacobiDS(sym(2),sym(3))
ans = jacobiDS(2, 3)
For symbolic variables or expressions,
jacobiDS
returns the unevaluated function call.
syms x y f = jacobiDS(x,y)
f = jacobiDS(x, y)
Substitute values for the variables by using subs
, and
convert values to double by using double
.
f = subs(f, [x y], [3 5])
f = jacobiDS(3, 5)
fVal = double(f)
fVal = 32.0302
Calculate f
to higher precision using
vpa
.
fVal = vpa(f)
fVal = 32.030154607596772037587224629884
Plot the Jacobi DS elliptic
function using fcontour
. Set u
on the
x-axis and m
on the y-axis by using the symbolic function
f
with the variable order (u,m)
. Fill
plot contours by setting Fill
to
on
.
syms f(u,m) f(u,m) = jacobiDS(u,m); fcontour(f,'Fill','on') title('Jacobi DS Elliptic Function') xlabel('u') ylabel('m')
ellipticK
| jacobiAM
| jacobiCD
| jacobiCN
| jacobiCS
| jacobiDC
| jacobiDN
| jacobiNC
| jacobiND
| jacobiNS
| jacobiSC
| jacobiSD
| jacobiSN
| jacobiZeta