Main Content

jacobiSD

Jacobi SD elliptic function

Description

example

jacobiSD(u,m) returns the Jacobi SD Elliptic Function of u and m. If u or m is an array, then jacobiSD acts element-wise.

Examples

collapse all

jacobiSD(2,1)
ans =
    3.6269

Call jacobiSD on array inputs. jacobiSD acts element-wise when u or m is an array.

jacobiSD([2 1 -3],[1 2 3])
ans =
    3.6269    2.1629 -126.3078

Convert numeric input to symbolic form using sym, and find the Jacobi SD elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiSD returns exact symbolic output.

jacobiSD(sym(2),sym(1))
ans =
sinh(2)

Show that for other values of u or m, jacobiSD returns an unevaluated function call.

jacobiSD(sym(2),sym(3))
ans =
jacobiSD(2, 3)

For symbolic variables or expressions, jacobiSD returns the unevaluated function call.

syms x y
f = jacobiSD(x,y)
f =
jacobiSD(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiSD(3, 5)
fVal = double(f)
fVal =
    0.0312

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
0.031220579864538785956650143970485

Plot the Jacobi SD elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiSD(u,m);
fcontour(f,'Fill','on')
title('Jacobi SD Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes. The axes with title Jacobi SD Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi SD Elliptic Function

The Jacobi SD elliptic function is

sd(u,m) = sn(u,m)/dn(u,m)

where sn and dn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b