Main Content

jacobiNC

Jacobi NC elliptic function

Description

example

jacobiNC(u,m) returns the Jacobi NC Elliptic Function of u and m. If u or m is an array, then jacobiNC acts element-wise.

Examples

collapse all

jacobiNC(2,1)
ans =
    3.7622

Call jacobiNC on array inputs. jacobiNC acts element-wise when u or m is an array.

jacobiNC([2 1 -3],[1 2 3])
ans =
    3.7622    1.3505    1.2247

Convert numeric input to symbolic form using sym, and find the Jacobi NC elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiNC returns exact symbolic output.

jacobiNC(sym(2),sym(1))
ans =
cosh(2)

Show that for other values of u or m, jacobiNC returns an unevaluated function call.

jacobiNC(sym(2),sym(3))
ans =
jacobiNC(2, 3)

For symbolic variables or expressions, jacobiNC returns the unevaluated function call.

syms x y
f = jacobiNC(x,y)
f =
jacobiNC(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiNC(3, 5)
fVal = double(f)
fVal =
    1.0005

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
1.0004853517240922102007985618873

Plot the Jacobi NC elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiNC(u,m);
fcontour(f,'Fill','on')
title('Jacobi NC Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes object. The axes object with title Jacobi NC Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi NC Elliptic Function

The Jacobi NC elliptic function is

nc(u,m) = 1/cn(u,m)

where cn is the respective Jacobi elliptic function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b