fractalSnowflake
Description
The default fractalSnowflake
object creates a Koch
snowflake fractal antenna resonating around 4.12 GHz. These fractal antennas are used in
mobile phone, Wi-Fi®, and radar applications.
A fractal antenna uses a fractal, a self-similar design that is repeated in different dimensions so as to maximize effective the length or increase the perimeter of the material that transmits or receives electromagnetic radiation. This makes the fractal antennas compact and therefore suitable for use in small and complex circuits. Fractal antennas also have higher input impedance or resistance due to their length or increased perimeter.
All fractal antennas are printed structures that are etched on a dielectric substrate.
Creation
Description
creates a
Koch’s snowflake fractal antenna with default property values. The default
fractal is centered at the origin, and the number of iterations is set to 2.
The default dimensions are chosen for an operating frequency of around 4.12
GHz.ant
= fractalSnowflake
setsproperties using one or more name-value arguments.
ant
= fractalSnowflake(Name=Value
)Name
is the property name and
Value
is the corresponding value. You can specify
several name-value arguments in any order as
Name1=Value1,...,NameN=ValueN
. Properties that you do
not specify, retain their default values.
For example, ant = fractalSnowflake(Numiterations=4)
creates a Koch's snowflake with four iterations.
Properties
Object Functions
axialRatio | Calculate and plot axial ratio of antenna or array |
bandwidth | Calculate and plot absolute bandwidth of antenna or array |
beamwidth | Beamwidth of antenna |
current | Current distribution on antenna or array surface |
charge | Charge distribution on antenna or array surface |
design | Design prototype antenna or arrays for resonance around specified frequency or create AI-based antenna from antenna catalog objects |
efficiency | Calculate and plot radiation efficiency of antenna or array |
EHfields | Electric and magnetic fields of antennas or embedded electric and magnetic fields of antenna element in arrays |
feedCurrent | Calculate current at feed for antenna or array |
impedance | Calculate and plot input impedance of antenna or scan impedance of array |
info | Display information about antenna, array, or platform |
memoryEstimate | Estimate memory required to solve antenna or array mesh |
mesh | Mesh properties of metal, dielectric antenna, or array structure |
meshconfig | Change meshing mode of antenna, array, custom antenna, custom array, or custom geometry |
msiwrite | Write antenna or array analysis data to MSI planet file |
optimize | Optimize antenna or array using SADEA optimizer |
pattern | Plot radiation pattern and phase of antenna or array or embedded pattern of antenna element in array |
patternAzimuth | Azimuth plane radiation pattern of antenna or array |
patternElevation | Elevation plane radiation pattern of antenna or array |
peakRadiation | Calculate and mark maximum radiation points of antenna or array on radiation pattern |
rcs | Calculate and plot monostatic and bistatic radar cross section (RCS) of platform, antenna, or array |
resonantFrequency | Calculate and plot resonant frequency of antenna |
returnLoss | Calculate and plot return loss of antenna or scan return loss of array |
show | Display antenna, array structures, shapes, or platform |
sparameters | Calculate S-parameters for antenna or array |
stlwrite | Write mesh information to STL file |
vswr | Calculate and plot voltage standing wave ratio (VSWR) of antenna or array element |
Examples
Version History
Introduced in R2020a