Deep Learning Toolbox

BEDEUTENDES UPDATE

 

Deep Learning Toolbox

Entwerfen, Trainieren, Analysieren und Simulieren von Deep-Learning-Netzen

Deep Learning für Ingenieure

Erstellen und verwenden Sie erklärbare, fehlerresistente und skalierbare Deep-Learning-Modelle bei der automatischen Sichtprüfung, Modellierung mit reduzierter Ordnung, drahtlosen Kommunikation, Computer Vision und anderen Anwendungen.

Deep Learning in Simulink

Verwenden Sie Deep Learning mit Simulink, um die Integration von Deep-Learning-Modellen in größere Systeme zu testen. Simulieren Sie auf MATLAB oder Python basierende Modelle, um Modellverhalten und Systemleistung abzuschätzen.

Integration in PyTorch und TensorFlow

Austausch von Deep-Learning-Modellen mit Python-basierten Deep-Learning-Frameworks. Importieren Sie PyTorch-, TensorFlow- und ONNX-Modelle, exportieren Sie Netze in TensorFlow und ONNX mit nur einer Zeile Code. Führen Sie Python-basierte Modelle gemeinsam in MATLAB und Simulink aus.

Codegenerierung und -bereitstellung

Generieren Sie automatisch optimierten C/C++ Code (mit MATLAB Coder) und CUDA Code (mit GPU Coder) zur Bereitstellung auf CPUs und GPUs. Generieren Sie synthetisierbaren Verilog® und VHDL® Code (mit der Deep Learning HDL Toolbox) zur Bereitstellung auf FPGAs und SoCs.

Erklärbarkeit und Verifikation

Visualisieren Sie den Trainingsfortschritt und Aktivierungen tiefer neuronaler Netze. Verwenden Sie Grad-CAM, D-RISE und LIME, um Netzergebnisse zu erklären. Verifizieren von Robustheit und Zuverlässigkeit tiefer neuronaler Netze

Entwurf und Training von Netzen

Verwenden Sie Deep-Learning-Algorithmen, um CNNs, LSTMs, GANs und Transformer zu erstellen, oder führen Sie Transfer Learning mit vortrainierten Modellen durch. Bild-, Video- und Signaldaten lassen sich zum Netztraining automatisch kennzeichnen, verarbeiten und anreichern.

Low-Code-Apps

Beschleunigen Sie Entwurf, Analyse und Transfer Learning von Netzen für integrierte und Python-basierte Modelle mithilfe der Deep Network Designer-App. Optimieren und vergleichen Sie mehrere Modelle mithilfe der Experiment Manager-App.

Deep-Learning-Komprimierung

Komprimieren Sie Ihr Deep-Learning-Netz mit Quantisierung, Projektion oder Pruning, damit es weniger Arbeitsspeicher verbraucht, und steigern Sie die Inferenzleistung. Beurteilen Sie die Inferenzleistung und -genauigkeit mithilfe der Deep Network Quantizer-App.

Hochskalierung des Deep Learning

Verbessern Sie die Trainingsgeschwindigkeit beim Deep Learning mithilfe von GPUs, Cloud-Beschleunigung und verteilten Systemen. Trainieren Sie mehrere Netze parallel und lassen Sie Deep-Learning-Berechnungen im Hintergrund ausführen.

​„Es war das erste Mal, dass wir Sensoren mit neuronalen Netzen in einer unserer Antriebs-ECUs simuliert haben. Ohne MATLAB und Simulink müssten wir umständlich und händisch programmieren, was äußerst langsam und fehleranfällig ist.“

Katja Deuschl, KI-Entwicklerin bei Mercedes-Benz

Kostenlose Testversion anfordern

30 Tage kostenlos ausprobieren.


Bereit zum Kauf?

Angebot anfordern und Erweiterungsprodukte entdecken.

Studieren Sie?

Ihre Hochschule bietet möglicherweise bereits Zugang zu MATLAB, Simulink und Add-on-Produkten über eine Campus-Wide License.