Integriertes Training
Nachdem Sie die Netzarchitektur definiert haben, können Sie die Trainingsparameter mit der Funktion trainingOptions
festlegen. Sie können das Netz dann mit der Funktion trainnet
trainieren. Verwenden Sie das trainierte Netz, um Klassenbezeichnungen oder numerische Antworten vorherzusagen.
Apps
Deep Network Designer | Entwurf und Visualisierung von Deep-Learning-Netzen |
Funktionen
Themen
- Create Simple Deep Learning Neural Network for Classification
This example shows how to create and train a simple convolutional neural network for deep learning classification.
- Train Convolutional Neural Network for Regression
This example shows how to train a convolutional neural network to predict the angles of rotation of handwritten digits.
- Time Series Forecasting Using Deep Learning
This example shows how to forecast time series data using a long short-term memory (LSTM) network.
- Sequence Classification Using Deep Learning
This example shows how to classify sequence data using a long short-term memory (LSTM) network.
- Sequence-to-Sequence Classification Using Deep Learning
This example shows how to classify each time step of sequence data using a long short-term memory (LSTM) network.
- Sequence-to-Sequence Regression Using Deep Learning
This example shows how to predict the remaining useful life (RUL) of engines by using deep learning.
- Sequence-to-One Regression Using Deep Learning
This example shows how to predict the frequency of a waveform using a long short-term memory (LSTM) neural network.
- Create Custom Deep Learning Training Plot
This example shows how to create a custom training plot that updates at each iteration during training of deep learning neural networks using
trainnet
. (Seit R2023b) - Custom Stopping Criteria for Deep Learning Training
This example shows how to stop training of deep learning neural networks based on custom stopping criteria using
trainnet
. (Seit R2023b) - Speed Up Deep Neural Network Training
Learn how to accelerate deep neural network training.