Deep Learning


Deep Learning

Drei Dinge, die Sie wissen sollten

Deep Learning ist eine Machine-Learning-Technik, mit der Computer eine Fähigkeit erwerben, die Menschen von Natur aus haben: aus Beispielen zu lernen. Deep Learning ist eine wichtige Technologie in fahrerlosen Autos, die es diesen ermöglicht, ein Stoppschild zu erkennen oder einen Fußgänger von einer Straßenlaterne zu unterscheiden. Sie ist der Schlüssel zur Sprachsteuerung von Verbrauchergeräten wie Smartphones, Tablets, Fernsehern und Freisprecheinrichtungen. Deep Learning erhält in letzter Zeit sehr viel Aufmerksamkeit und das aus gutem Grund. Es erreicht Ergebnisse, die zuvor unmöglich waren.

Beim Deep Learning erlernt ein Computermodell die Durchführung von Klassifikationsaufgaben direkt aus Bildern, Text oder akustischen Daten. Deep-Learning-Modelle nach dem neuesten Stand der Technik können manchmal genauere Ergebnisse erzielen als Menschen. Modelle werden anhand umfangreicher Sätze klassifizierter Daten und anhand neuronaler Netzarchitekturen mit vielen Ebenen trainiert.

Why Deep Learning Matters

Wichtigkeit von Deep Learning

How does deep learning attain such impressive results?

In a word, accuracy. Deep learning achieves recognition accuracy at higher levels than ever before. This helps consumer electronics meet user expectations, and it is crucial for safety-critical applications like driverless cars. Recent advances in deep learning have improved to the point where deep learning outperforms humans in some tasks like classifying objects in images.

While deep learning was first theorized in the 1980s, there are two main reasons it has only recently become useful:

  1. Deep learning requires large amounts of labeled data. For example, driverless car development requires millions of images and thousands of hours of video.
  2. Deep learning requires substantial computing power. High-performance GPUs have a parallel architecture that is efficient for deep learning. When combined with clusters or cloud computing, this enables development teams to reduce training time for a deep learning network from weeks to hours or less.

Examples of Deep Learning at Work

Deep learning applications are used in industries from automated driving to medical devices.

Automated Driving: Automotive researchers are using deep learning to automatically detect objects such as stop signs and traffic lights. In addition, deep learning is used to detect pedestrians, which helps decrease accidents.

Aerospace and Defense: Deep learning is used to identify objects from satellites that locate areas of interest, and identify safe or unsafe zones for troops.

Medical Research: Cancer researchers are using deep learning to automatically detect cancer cells. Teams at UCLA built an advanced microscope that yields a high-dimensional data set used to train a deep learning application to accurately identify cancer cells.

Industrial Automation: Deep learning is helping to improve worker safety around heavy machinery by automatically detecting when people or objects are within an unsafe distance of machines.

Electronics: Deep learning is being used in automated hearing and speech translation. For example, home assistance devices that respond to your voice and know your preferences are powered by deep learning applications.

How Deep Learning Works

Most deep learning methods use neural network architectures, which is why deep learning models are often referred to as deep neural networks.

The term “deep” usually refers to the number of hidden layers in the neural network. Traditional neural networks only contain 2-3 hidden layers, while deep networks can have as many as 150.

Deep learning models are trained by using large sets of labeled data and neural network architectures that learn features directly from the data without the need for manual feature extraction.

Figure 1: Neural networks, which are organized in layers consisting of a set of interconnected nodes. Networks can have tens or hundreds of hidden layers.

One of the most popular types of deep neural networks is known as convolutional neural networks (CNN or ConvNet). A CNN convolves learned features with input data, and uses 2D convolutional layers, making this architecture well suited to processing 2D data, such as images.

CNNs eliminate the need for manual feature extraction, so you do not need to identify features used to classify images. The CNN works by extracting features directly from images. The relevant features are not pretrained; they are learned while the network trains on a collection of images. This automated feature extraction makes deep learning models highly accurate for computer vision tasks such as object classification.

Figure 2: Example of a network with many convolutional layers. Filters are applied to each training image at different resolutions, and the output of each convolved image serves as the input to the next layer.

CNNs learn to detect different features of an image using tens or hundreds of hidden layers. Every hidden layer increases the complexity of the learned image features. For example, the first hidden layer could learn how to detect edges, and the last learns how to detect more complex shapes specifically catered to the shape of the object we are trying to recognize.

What's the Difference Between Machine Learning and Deep Learning?

Deep learning is a specialized form of machine learning. A machine learning workflow starts with relevant features being manually extracted from images. The features are then used to create a model that categorizes the objects in the image. With a deep learning workflow, relevant features are automatically extracted from images. In addition, deep learning performs “end-to-end learning” – where a network is given raw data and a task to perform, such as classification, and it learns how to do this automatically.

Another key difference is deep learning algorithms scale with data, whereas shallow learning converges. Shallow learning refers to machine learning methods that plateau at a certain level of performance when you add more examples and training data to the network.

A key advantage of deep learning networks is that they often continue to improve as the size of your data increases.

Figure 3. Comparing a machine learning approach to categorizing vehicles (left) with deep learning (right).

In machine learning, you manually choose features and a classifier to sort images. With deep learning, feature extraction and modeling steps are automatic.

Choosing Between Machine Learning and Deep Learning

Machine learning offers a variety of techniques and models you can choose based on your application, the size of data you're processing, and the type of problem you want to solve. A successful deep learning application requires a very large amount of data (thousands of images) to train the model, as well as GPUs, or graphics processing units, to rapidly process your data.

When choosing between machine learning and deep learning, consider whether you have a high-performance GPU and lots of labeled data. If you don’t have either of those things, it may make more sense to use machine learning instead of deep learning. Deep learning is generally more complex, so you’ll need at least a few thousand images to get reliable results. Having a high-performance GPU means the model will take less time to analyze all those images.

How to Create and Train Deep Learning Models

The three most common ways people use deep learning to perform object classification are:

Training from Scratch

To train a deep network from scratch, you gather a very large labeled data set and design a network architecture that will learn the features and model. This is good for new applications, or applications that will have a large number of output categories. This is a less common approach because with the large amount of data and rate of learning, these networks typically take days or weeks to train.

Transfer Learning

Most deep learning applications use the transfer learning approach, a process that involves fine-tuning a pretrained model. You start with an existing network, such as AlexNet or GoogLeNet, and feed in new data containing previously unknown classes. After making some tweaks to the network, you can now perform a new task, such as categorizing only dogs or cats instead of 1000 different objects. This also has the advantage of needing much less data (processing thousands of images, rather than millions), so computation time drops to minutes or hours.

Transfer learning requires an interface to the internals of the pre-existing network, so it can be surgically modified and enhanced for the new task. MATLAB® has tools and functions designed to help you do transfer learning.

Feature Extraction

A slightly less common, more specialized approach to deep learning is to use the network as a feature extractor. Since all the layers are tasked with learning certain features from images, we can pull these features out of the network at any time during the training process. These features can then be used as input to a machine learning model such as support vector machines (SVM).

Accelerating Deep Learning Models with GPUs

Training a deep learning model can take a long time, from days to weeks. Using GPU acceleration can speed up the process significantly. Using MATLAB with a GPU reduces the time required to train a network and can cut the training time for an image classification problem from days down to hours. In training deep learning models, MATLAB uses GPUs (when available) without requiring you to understand how to program GPUs explicitly.

Figure 4. Neural Network Toolbox commands for training your own CNN from scratch or using a pretrained model for transfer learning.

Funktionsweise von Deep Learning


Sie können vortrainierte Modelle mit tiefen neuronalen Netzen verwenden, um Deep Learning schnell auf Ihre Aufgaben anzuwenden, indem Sie Transfer Learning oder eine Merkmalsextraktion verwenden. Einige der für MATLAB-Anwender verfügbaren Modelle sind AlexNet, VGG-16 und VGG-19 sowie Caffe-Modelle (etwa von Caffe Model Zoo), die mit importCaffeNetwork importiert werden.

Verwendung von AlexNet zur Erkennung von Objekten mit einer Webcam

Sie können MATLAB, eine einfache Webcam und ein tiefes neuronales Netz verwenden, um Objekte in Ihrer Umgebung zu erkennen.

Beispiel: Objekterfassung mit Deep Learning

Neben der Objekterkennung, mit der ein spezifisches Objekt in einem Bild oder Video identifiziert wird, ermöglicht Deep Learning auch die Objekterfassung. Die Objekterfassung ist die Erkennung und Ortsbestimmung des jeweiligen Objekts in einer Szene. Sie ermöglicht eine Ortsbestimmung für mehrere Objekte im Bild.

Deep Learning mit MATLAB

MATLAB makes deep learning easy. With tools and functions for managing large data sets, MATLAB also offers specialized toolboxes for working with machine learning, neural networks, computer vision, and automated driving.

With just a few lines of code, MATLAB let you do deep learning without being an expert. Get started quickly, create and visualize models, and deploy models to servers and embedded devices.

Teams are successful using MATLAB for deep learning because it lets you:

  1. Create and Visualize Models with Just a Few Lines of Code.
  2. MATLAB lets you build deep learning models with minimal code. With MATLAB, you can quickly import pretrained models and visualize and debug intermediate results as you adjust training parameters.

  3. Perform Deep Learning Without Being an Expert.
  4. You can use MATLAB to learn and gain expertise in the area of deep learning. Most of us have never taken a course in deep learning. We have to learn on the job. MATLAB makes learning about this field practical and accessible. In addition, MATLAB enables domain experts to do deep learning – instead of handing the task over to data scientists who may not know your industry or application.

  5. Automate Ground Truth Labeling of Images and Video.
  6. MATLAB enables users to interactively label objects within images and can automate ground truth labeling within videos for training and testing deep learning models. This interactive and automated approach can lead to better results in less time.

  7. Integrate Deep Learning in a Single Workflow.
  8. MATLAB can unify multiple domains in a single workflow. With MATLAB, you can do your thinking and programming in one environment. It offers tools and functions for deep learning, and also for a range of domains that feed into deep learning algorithms, such as signal processing, computer vision, and data analytics.

With MATLAB, you can integrate results into your existing applications. MATLAB automates deploying your deep learning models on enterprise systems, clusters, clouds, and embedded devices.

See more deep learning features and get example code.

Related products: MATLAB, Computer Vision System Toolbox™, Statistics and Machine Learning Toolbox™, Neural Network Toolbox™, and Automated Driving System Toolbox™.

Mit MATLAB ist Deep Learning ganz leicht. Neben Tools und Funktionen für die Verwaltung großer Datenmengen bietet MATLAB auch spezialisierte Toolboxen für die Arbeit mit Machine Learning, neuronalen Netzen, Computer Vision und automatisiertem Fahren.

Mit nur wenigen Codezeilen können Sie mit MATLAB Deep Learning anwenden, ohne ein Experte sein zu müssen. Machen Sie schnell die ersten Schritte, erstellen und visualisieren Sie Modelle und stellen Sie Modelle auf Servern und Embedded-Geräten bereit.

Teams setzen MATLAB dank der folgenden Möglichkeiten erfolgreich für Deep Learning ein:

  1. Erstellung und Visualisierung von Modellen mit nur wenigen Codezeilen
  2. Dank MATLAB können Sie Deep-Learning-Modelle mit sehr wenig Code erstellen. Mit MATLAB können Sie vortrainierte Modelle schnell importieren sowie Zwischenergebnisse visualisieren und debuggen, wenn Sie Trainingsparameter anpassen.

  3. Anwendung von Deep Learning, ohne Experte zu sein
  4. Mit MATLAB können Sie sich Wissen im Bereich des Deep Learning aneignen und es üben. Die meisten von uns haben noch nie einen Kurs zu Deep Learning besucht. Wir müssen es in der Praxis lernen. MATLAB ermöglicht praktisches und leicht zugängliches Lernen in diesem Bereich. Außerdem können Fachexperten mit MATLAB Deep Learning selbst anwenden – statt diese Aufgabe Datenwissenschaftlern zu überlassen, die die Branche oder Anwendung möglicherweise nicht kennen.

  5. Automatisierung der Ground-Truth-Klassifikation von Bildern und Videodaten
  6. Mit MATLAB können Benutzer Objekte auf Bildern interaktiv klassifizieren, und sie können die Ground-Truth-Klassifikation in Videos automatisieren, um Deep-Learning-Modelle zu trainieren und zu testen. Mit diesem interaktiven und automatisierten Ansatz können bessere Resultate in kürzerer Zeit erzielt werden.

  7. Integration von Deep Learning in einem einzelnen Workflow
  8. Mit MATLAB können mehrere Bereiche in einem einzelnen Workflow vereint werden. Mit MATLAB können Sie in ein und derselben Umgebung all Ihre Forschungs- und Programmieraufgaben erledigen. Sie bietet Tools und Funktionen für das Deep Learning sowie für eine Reihe von Bereichen, die von Deep-Learning-Algorithmen genutzt werden können, wie Signalverarbeitung, Computer Vision und Datenanalysen.

Mit MATLAB können Sie Ergebnisse in Ihre vorhandenen Anwendungen integrieren. MATLAB automatisiert die Bereitstellung Ihrer Deep-Learning-Modelle auf Unternehmenssystemen, in Clustern, in Clouds und auf Embedded-Geräten.

Siehe auch Deep Learning Funktionen und Codebeispiele.

Weitere Informationen zum Trainieren und zur Verwendung von Deep-Learning-Modellen finden Sie unter MATLAB, Computer Vision System Toolbox™, Statistics and Machine Learning Toolbox™, Neural Network Toolbox™ und Automated Driving System Toolbox™.

Learn More About Deep Learning

Erfahren Sie Grundlagen des Deep Learning in diesem MATLAB® Tech Talk. Sie erfahren, warum Deep Learning so beliebt geworden ist, und Sie lernen drei Konzepte kennen: Was Deep Learning so ist, wie es in der realen Welt verwendet wird, und wie Sie selbst Ihre ersten Schritte damit machen können.
Sehen Sie sich eine kurze Demonstration dazu an, wie Sie MATLAB®, eine einfache Webcam und ein tiefes neuronales Netz verwenden können, um Objekte in Ihrer Umgebung zu erkennen. Diese Demo verwendet AlexNet, ein vortrainiertes tiefes neuronales Faltungsnetzwerk (CNN oder ConvNet), das mit über einer Million Bildern trainiert wurde.
Erfahren Sie, wie Sie Transfer Learning in MATLAB einsetzen können, um Deep Learning Netzwerke für Ihre eignen Daten und Aufgaben zu trainieren.
An imaging system combining flow cytometry, photonic time stretch, and machine learning algorithms enables UCLA researchers to classify cancer cells in blood samples without using biomarker labels.
Use machine learning techniques in MATLAB to recognize scenes based on unique features within images.
Using a simple object detection and recognition example, this article illustrates how easy it is to use MATLAB® for deep learning, even without extensive knowledge of advanced computer vision algorithms or neural networks.