Das Simulink Add-on zur Modellierung mit reduzierter Ordnung bietet eine App zur Erstellung von Modellen mit reduzierter Ordnung (ROMs) aus in Simulink modellierten Subsystemen, einschließlich realitätsgetreuer Drittpartei-Simulationsmodelle hoher Ordnung. Modelle mit reduzierter Ordnung können bei der Desktop-Simulation auf Systemebene, bei Hardware-in-the-Loop-Tests (HIL), beim Reglerentwurf und bei der Modellierung virtueller Sensoren zum Einsatz kommen.
Mit dem Simulink Add-on zur Modellierung mit reduzierter Ordnung können Sie Folgendes tun:
- Die statistische Versuchsplanung einrichten und Ein-/Ausgabe-Trainingsdaten aus einem realitätsgetreuen Subsystem hoher Ordnung generieren
- KI-basierte Modelle mit reduzierter Ordnung mithilfe vorkonfigurierter Vorlagen trainieren und vergleichen
- KI-basierte Ersatzmodelle nach Simulink exportieren und bei Simulationen auf Systemebene, beim Reglerentwurf und bei HIL-Tests einsetzen
- Modelle mit reduzierter Ordnung als Functional Mockup Units (FMUs) exportieren, um sie außerhalb von MATLAB und Simulink zu verwenden (mit Simulink Compiler)
Anordnung von Versuchen
Wählen Sie Simulink-Signale und -Blockparameter als ROM-Eingaben, -Ausgaben und -Parameter. Entwerfen Sie interaktiv Simulationsexperimente, indem Sie integrierte Anregungstypen auswählen, um ROM-Eingaben zu ersetzen oder zu stören. Visualisieren Sie die Abdeckung des Entwurfsraums.
Ausführung von Versuchen
Geben Sie mit der Parallel Computing Toolbox an, ob die Versuche nacheinander oder gleichzeitig auszuführen sind, und starten Sie die Modellsimulationen. Visualisieren Sie Simulationsergebnisse für relevante Signale und Parameter mithilfe integrierter Visualisierungsdiagramme.
Trainieren von Modellen mit reduzierter Ordnung
Trainieren und vergleichen Sie verschiedene Arten von Modellen mit reduzierter Ordnung. Zur Auswahl stehen Modelle des neuronalen Zustandsraums, LSTM und nicht linearen ARX. Optimieren Sie Hyperparameter sequenziell oder parallel mit der Parallel Computing Toolbox, um die Modellpassung zu verbessern. Vergleichen Sie die Genauigkeitsmetriken für trainierte Modelle, um die besten für Ihre Anwendung auszuwählen.
Verwenden von Modellen mit reduzierter Ordnung in Simulink
Importieren Sie trainierte ROMs in Simulink, um sie bei der Simulation auf Systemebene, beim Reglerentwurf und bei HIL-Tests zu verwenden. Kombinieren Sie ROMs mit auf wissenschaftlichen Grundprinzipien basierenden Komponentenmodellen.
Bereitstellung und Export von Modellen mit reduzierter Ordnung
Stellen Sie ROMs durch automatische Codegenerierung in Embedded-Systemen bereit. Exportieren Sie ROMs als FMUs (mit Simulink Compiler), um sie außerhalb von MATLAB und Simulink zu verwenden.
Voraussetzungen:
Simulink, Deep Learning Toolbox, Statistics and Machine Learning Toolbox, System Identification Toolbox
Kompatibilität mit MATLAB Releases:
Kompatibel mit Releases ab R2023b