# Polynome

Kurvenanpassung, Wurzeln, Entwicklung von Partialbrüchen

Polynome sind Gleichungen einer einzelnen Variable mit nicht negativen Ganzzahl-Exponenten. In MATLAB® werden Polynome durch numerische Vektoren dargestellt, die die Polynom-Koeffizienten nach Potenz in absteigender Reihenfolge beinhalten. Beispielsweise entspricht `[1 -4 4]` x2 - 4x + 4. Weitere Informationen finden Sie unter Create and Evaluate Polynomials.

## Funktionen

 `poly` Polynomial with specified roots or characteristic polynomial `polydiv` Polynomial long division (Seit R2024a) `polyeig` Polynomial eigenvalue problem `polyfit` Polynomiale Kurvenanpassung `residue` Partial fraction expansion (partial fraction decomposition) `roots` Polynomwurzeln `polyval` Polynomial evaluation `polyvalm` Matrix polynomial evaluation `conv` Faltung und polynomiale Multiplikation `deconv` Least-squares deconvolution and polynomial division `polyint` Polynomial integration `polyder` Polynomial differentiation

## Themen

• Create and Evaluate Polynomials

This example shows how to represent a polynomial as a vector in MATLAB® and evaluate the polynomial at points of interest.

• Roots of Polynomials

Calculate polynomial roots numerically, graphically, or symbolically.

• Integrate and Differentiate Polynomials

This example shows how to use the `polyint` and `polyder` functions to analytically integrate or differentiate any polynomial represented by a vector of coefficients.

• Polynomial Curve Fitting

This example shows how to fit a polynomial curve to a set of data points using the `polyfit` function.

• Programmatic Fitting

There are many functions in MATLAB that are useful for data fitting.