Deep Learning with MATLAB, NVIDIA Jetson, and ROS
From the series: Implementation
Jon Zeosky and Sebastian Castro discuss how algorithms designed in MATLAB® can be deployed as standalone CUDA® code to target NVIDIA® GPUs, and how this standalone code can be used in a development process involving Robot Operating System (ROS).
In the software demonstration, Jon and Sebastian first use a pretrained neural network in MATLAB to create a deep learning classification algorithm. Then, they use GPU Coder™ to generate a standalone library from this algorithm and deploy it to an NVIDIA Jetson™ platform. Finally, they integrate the generated library into a ROS node developed in C++ to connect with other software nodes running on the network.
Download the example files used in this video from MATLAB Central File Exchange.
Learn more with the following resources:
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asien-Pazifik
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)