Mixed-Signal Blockset
Entwerfen, Analysieren und Simulieren von Analog- und Mixed-Signal-Systemen
Haben Sie Fragen? Vertrieb kontaktieren.
Haben Sie Fragen? Vertrieb kontaktieren.
Das Mixed-Signal Blockset bietet Modelle für Komponenten und Störungen, Analysetools und Testumgebungen für den Entwurf und die Verifikation von integrierten Mixed-Signal-Schaltkreisen (ICs).
Sie können PLLs, Datenkonverter und andere Systeme auf verschiedenen Abstraktionsebenen modellieren. Mit diesen Modellen lassen sich Mixed-Signal-Komponenten zusammen mit komplexen DSP-Algorithmen und Steuerlogik modellieren. Sie können die Modelle so anpassen, dass diese Störungen wie Rauschen, Nichtlinearitäten, Jitter und Quantisierungseffekte beinhalten. Durch die schnelle Simulation auf Systemebene mit Simulink-Solvern mit variabler Schrittweite können Sie die Implementierung debuggen und Entwurfsfehler identifizieren, ohne die Schaltung auf Transistorebene zu simulieren.
Mit der Mixed-Signal Analyzer-App lassen sich Mixed-Signal-Daten analysieren, Trends darin erkennen und diese visualisieren. Durch die Option zur Integration von Cadence® Virtuoso ADE in MATLAB ist es möglich, Datenbanken mit Simulationsergebnissen auf Schaltkreisebene in MATLAB importieren. Alternativ können Sie eine SPICE-Netzliste importieren und eine lineare, zeitinvariante Schaltung mit aus dem IC-Design extrahierten parasitären Elementen erstellen oder modifizieren. Das Blockset bietet Analysefunktionen zur Nachbearbeitung von Simulationsergebnissen, sodass Sie Spezifikationen überprüfen, Merkmale anpassen und Messergebnisse melden können.
Mit der Mixed-Signal Analyzer-App können Sie Mixed-Signal-Daten interaktiv visualisieren, analysieren und Trends erkennen. Mithilfe der Integration von Cadence Virtuoso ADE in MATLAB ist es möglich, Datenbanksimulationsergebnisse in MATLAB zu importieren.
Entwerfen und simulieren Sie Phasenregelkreise (Phase-Locked Loops, PLLs) auf Systemebene. Typische Architekturen sind Integer-N PLLs mit Single- oder Dual-Modus-Frequenzteilern und Fractional-N-PLLs mit Akkumulatoren oder Delta-Sigma-Modulatoren. Überprüfen und visualisieren Sie das Verhalten Ihrer Entwürfe bei offenem und geschlossenem Regelkreis.
Entwerfen und simulieren Sie einen Analog-Digital-Datenkonverter (ADC) und Digital-Analog-Datenkonverter (DAC) auf Systemebene. Typische Architekturen sind Flash-ADCs und Sukzessive-Approximations-Register-ADCs (SAR-ADCs) sowie binär gewichtete und segmentierte DACs.
Modellieren Sie den Apertur-Jitter in ADCs und legen Sie beliebige Profile für das Phasenrauschen im Frequenzbereich für VCOs and PLLs fest. Visualisieren Sie die Auswirkungen mit dem Augendiagrammblock.
Messen Sie die Einrastzeit, das Profil des Phasenrauschens und die Betriebsfrequenz von PLLs. Charakterisieren Sie die Leistung von Bausteinen wie VCOs, PFDs und Ladungspumpen. Messen Sie AC- und DC-Merkmale und den Apertur-Jitter von ADCs.
Entwerfen Sie Ihr Mixed-Signal-System mit Bausteinen wie Ladungspumpen, Schleifenfiltern, Phasenfrequenzdetektoren (PFDs), spannungsgesteuerten Oszillatoren (VCOs), Frequenzteilern, Abtasttaktquellen usw. Mit Simscape Electrical können Sie Analogmodelle auf einer niedrigeren Abstraktionsebene weiter verfeinern.
„Früher wussten wir erst beim Testen auf dem Chip, wie gut unsere Entwürfe mit Jitter umgehen konnten. Jetzt simulieren wir zeitkontinuierliche und -diskrete Modelle in Simulink auf Systemebene und haben beim Tapeout die Gewissheit, dass der Chip funktionieren wird.“