Main Content

Automated Visual Inspection

Automate quality assurance tasks using anomaly detection and classification techniques

Automated visual inspection (AVI) is a set of techniques used to determine whether an image represents a normal ("good") state or an anomalous ("defective") state. AVI assists and improves quality assurance processes commonly found in manufacturing settings. Modern visual inspection uses machine learning and deep learning techniques to produce useful results.

The specific technique you select to automate a visual inspection task depends on several factors. These factors include the amount of training data available for normal and anomalous samples, the number of anomaly classes to recognize, and the type of localization information required for understanding and monitoring predictions.