Transformationen
Fourier-, Chirp-Z-, DCT-, Hilbert-, Cepstrum-, Walsh-Hadamard-Transformation
Signal Processing Toolbox™ stellt Funktionen bereit, mit denen Sie häufig verwendete Vorwärts- und Rückwärtstransformationen berechnen können, darunter die schnelle Fourier-Transformation (FFT), die diskrete Kosinustransformation (DCT) und die Walsh-Hadamard-Transformation. Extrahieren Sie die Signalhüllkurven und schätzen Sie die Momentanfrequenzen mithilfe des analytischen Signals. Signale im Zeit-Frequenz-Bereich analysieren. Untersuchen Sie Amplituden-Phasen-Beziehungen, schätzen Sie Grundfrequenzen und erkennen Sie spektrale Periodizität mithilfe des Cepstrums. Berechnen Sie diskrete Fourier-Transformationen mit Hilfe des Goertzel-Algorithmus zweiter Ordnung.
Funktionen
Themen
Diskrete Fourier- und Kosinustransformationen
- Discrete Fourier Transform
Explore the primary tool of digital signal processing. - Chirp Z-Transform
Use the CZT to evaluate the Z-transform outside of the unit circle and to compute transforms of prime length. - Discrete Cosine Transform
Compute discrete cosine transforms and learn about their energy compaction properties. - DCT for Speech Signal Compression
Use the discrete cosine transform to compress speech signals.
Hilbert- und Walsh-Hadamard-Transformationen
- Hilbert Transform
The Hilbert transform helps form the analytic signal. - Analytic Signal for Cosine
Determine the analytic signal for a cosine and verify its properties. - Envelope Extraction
Extract the envelope of a signal using thehilbertandenvelopefunctions. - Analytic Signal and Hilbert Transform
Generate the analytic signal for a finite block of data using thehilbertfunction and an FIR Hilbert transformer. - Hilbert Transform and Instantaneous Frequency
Estimate the instantaneous frequency of a monocomponent signal using the Hilbert transform. Show that the procedure does not work for multicomponent signals. - Single-Sideband Amplitude Modulation
Perform single-sideband amplitude modulation of a signal using the Hilbert transform. Single-sideband AM signals have less bandwidth than normal AM signals. - Walsh-Hadamard Transform
Learn about the Walsh-Hadamard transform, a non-sinusoidal, orthogonal transformation technique. - Walsh-Hadamard Transform for Spectral Analysis and Compression of ECG Signals
Use an electrocardiogram signal to illustrate the Walsh-Hadamard transform.
Cepstralanalyse
- Complex Cepstrum — Fundamental Frequency Estimation
Use the complex cepstrum to estimate a speaker’s fundamental frequency. Compare the result with the estimate obtained with a zero-crossing method. - Cepstrum Analysis
Apply the complex cepstrum to detect echo in a signal.


