Trainieren von tiefen neuronalen Netzen
Nachdem Sie die Netzarchitektur definiert haben, können Sie die Trainingsparameter mit der Funktion trainingOptions
festlegen. Sie können das Netz dann mit der Funktion trainnet
trainieren. Verwenden Sie das trainierte Netz, um Klassenbezeichnungen oder numerische Antworten vorherzusagen.
Sie können ein neuronales Netz auf einer CPU, einer Grafikkarte, mehreren CPUs oder Grafikkarten oder parallel auf einem Cluster oder in der Cloud trainieren. Das Training auf einer Grafikkarte und das parallele Training erfordern die Parallel Computing Toolbox™. Bei der Verwendung einer Grafikkarte ist eine unterstützte Grafikkarte erforderlich (Informationen zu unterstützten Geräten finden Sie unter GPU Computing Requirements (Parallel Computing Toolbox)). Geben Sie die Ausführungsumgebung mit der trainingOptions
-Funktion an.
Wenn die trainingOptions
-Funktion nicht die Trainingsoptionen bietet, die Sie für Ihre Aufgabe benötigen, oder die benutzerdefinierten Ausgabeschichten die benötigten Verlustfunktionen nicht unterstützen, können Sie eine benutzerdefinierte Trainingsschleife definieren. Für Modelle, die nicht als Netz von Schichten angegeben werden können, können Sie das Modell als Funktion definieren. Weitere Informationen finden Sie unter Define Custom Training Loops, Loss Functions, and Networks.
Kategorien
- Integriertes Training
Trainieren von Deep-Learning-Netzen mit integrierten Trainingsfunktionen
- Benutzerdefinierte Trainingsschleifen
Trainieren von Deep-Learning-Netzen mit benutzerdefinierten Trainingsschleifen