Abstimmung
Weitere Informationen, wie man Optionen mit der trainingOptions
-Funktion einstellt, finden Sie unter Set Up Parameters and Train Convolutional Neural Network. Nachdem Sie einige gute Startoptionen identifiziert haben, können Sie eine erschöpfende Suche von Hyperparametern automatisieren oder eine Bayes'sche Optimierung mithilfe des Experiment Manager ausprobieren.
Untersuchen Sie die Fehlerresistenz des Netzes durch die Generierung gegnerischer Beispiele. Anschließend können Sie mit der Fast-Gradient-Sign-Methode (FGSM) gegnerisches Training durchführen, um ein Netz zu trainieren, das fehlerresistent gegenüber gegnerischen Störeinflüssen ist.
Apps
Deep Network Designer | Entwurf und Visualisierung von Deep-Learning-Netzen |
Objekte
trainingProgressMonitor | Monitor and plot training progress for deep learning custom training loops (Seit R2022b) |
Funktionen
trainingOptions | Options for training deep learning neural network |
trainnet | Train deep learning neural network (Seit R2023b) |
Themen
- Set Up Parameters and Train Convolutional Neural Network
Learn how to set up training parameters for a convolutional neural network.
- Deep Learning Using Bayesian Optimization
This example shows how to apply Bayesian optimization to deep learning and find optimal network hyperparameters and training options for convolutional neural networks.
- Detect Issues During Deep Neural Network Training
This example shows how to automatically detect issues while training a deep neural network.
- Train Deep Learning Networks in Parallel
This example shows how to run multiple deep learning experiments on your local machine.
- Train Network Using Custom Training Loop
This example shows how to train a network that classifies handwritten digits with a custom learning rate schedule.
- Compare Activation Layers
This example shows how to compare the accuracy of training networks with ReLU, leaky ReLU, ELU, and swish activation layers.
- Deep Learning Tips and Tricks
Learn how to improve the accuracy of deep learning networks.
- Speed Up Deep Neural Network Training
Learn how to accelerate deep neural network training.
- Specify Custom Weight Initialization Function
This example shows how to create a custom He weight initialization function for convolution layers followed by leaky ReLU layers.
- Compare Layer Weight Initializers
This example shows how to train deep learning networks with different weight initializers.
- Create Custom Deep Learning Training Plot
This example shows how to create a custom training plot that updates at each iteration during training of deep learning neural networks using
trainnet
. (Seit R2023b) - Custom Stopping Criteria for Deep Learning Training
This example shows how to stop training of deep learning neural networks based on custom stopping criteria using
trainnet
. (Seit R2023b)