Richard Willey, MathWorks
Jiro Doke, MathWorks
Engineers and scientists often need to invest significant amounts of time and effort analyzing large data sets. This task becomes even more complicated if sensor failures or drop outs result in bad or missing data points. Data management techniques can help mitigate these types of problems.
An example application will demonstrate how MATLAB and statistics add-on products can be used to organize information, compensate for missing data, and enhance data analysis.
This presentation will show you how to:
·Use dataset arrays to organize and analyze heterogeneous data/metadata
·Use categorical arrays to work with data that take on values from a finite set of levels (or categories)
·Use techniques such as filtering, mean/median replacement, interpolation, and regression substitution to remove missing data
·Perform Exploratory Data Analysis using interaction visualization tools
·Capture and model trends observed in the data
Previous knowledge of MATLAB is not required to attend this webinar.
Recorded: 14 Oct 2008
Featured Product
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
Select web siteYou can also select a web site from the following list:
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
This website uses cookies to improve your user experience, personalize content and ads, and analyze website traffic. By continuing to use this website, you consent to our use of cookies. Please see our Privacy Policy to learn more about cookies and how to change your settings.