Grad-CAM for AlexNet to explain the reason of classification

Grad-CAM for visual explanation with re-trained AlexNet
315 Downloads
Aktualisiert 25. Dez 2020

Class Activation Mapping(CAM) is a good method to explain why the model classify the object as that.
https://jp.mathworks.com/matlabcentral/fileexchange/69357-class-activation-mapping
But network models which can be applied for CAM are limited.
Grad-CAM is the method to generalize CAM to work with many kinds of networks.

Through this demo, you can learn workflow from retraining model(AlexNet) to applying Grad-CAM on it.

[Japanese]
CNNを用いたディープラーニングによる分類の判定精度は非常に高く、多くの領域での画像自動判定に利用されています。一方で、内部がブラックボックスで「なぜその判定になったのかわからない」点に不安を感じる方もいます。Class Activation Mapping(CAM)は判定要因の可視化に非常に便利ですが、適用できるネットワークに制限があります。

Grad-CAMはGradietを利用して任意のネットワーク・層でCAMを一般化した方法です。
このサンプルでAlexNetでの転移学習からGrad-CAMの適用までのコードを確認できます。

[Keyword]
画像処理・IPCVデモ・ディープラーニング・深層学習・転移学習・入門・物体認識・画像分類・コンピュータビジョン・ニューラルネットワーク・人工知能・外観検査・可視化

Paper:
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization.
Ramprasaath R. Selvaraju, etc
https://arxiv.org/abs/1610.02391

Zitieren als

Takuji Fukumoto (2024). Grad-CAM for AlexNet to explain the reason of classification (https://github.com/mathworks/Grad-CAM-for-AlexNet-to-explain-the-reason-of-classification/releases/tag/1.0.1), GitHub. Abgerufen .

Kompatibilität der MATLAB-Version
Erstellt mit R2019b
Kompatibel mit R2019b und späteren Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.1

See release notes for this release on GitHub: https://github.com/mathworks/Grad-CAM-for-AlexNet-to-explain-the-reason-of-classification/releases/tag/1.0.1

1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.