Deep Learning ToolboxTM Model for NASNet-Large Network
Pretrained NasNet-Large network model for image classification
1,5K Downloads
Aktualisiert
11. Sep 2024
NASNet-Large is a pretrained model that has been trained on a subset of the ImageNet database. This is one of the models from the NASNet architecture family. NASNet architectures were learned from data using a recurrent neural network instead of being fully designed by humans like the other pretrained models.
This model is trained on more than a million images and can classify images into 1000 object categories (e.g. keyboard, mouse, pencil, and many animals).
Opening the nasnetlarge.mlpkginstall file from your operating system or from within MATLAB will initiate the installation process for the release you have.
This mlpkginstall file is functional for R2019a and beyond. Use nasnetlarge instead of imagePretrainedNetwork if using a release prior to R2024a.
Usage Example:
% Access the trained model
[net, classes] = imagePretrainedNetwork("nasnetlarge");
% See details of the architecture
net.Layers
% Read the image to classify
I = imread('peppers.png');
% Adjust size of the image
sz = net.Layers(1).InputSize
I = I(1:sz(1),1:sz(2),1:sz(3));
% Classify the image using NasNet-Large
scores = predict(net, single(I));
label = scores2label(scores, classes)
% Show the image and the classification results
figure
imshow(I)
text(10,20,char(label),'Color','white')
Kompatibilität der MATLAB-Version
Erstellt mit
R2019a
Kompatibel mit R2019a bis R2024b
Plattform-Kompatibilität
Windows macOS (Apple Silicon) macOS (Intel) LinuxKategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und MATLAB Answers
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.