Medical Image Segmentation Using SegNet

Version 1.0.0.2 (1,46 MB) von Kei Otsuka
How to create, train and evaluate SegNet for medical image segmentation
3,3K Downloads
Aktualisiert 19. Aug 2020

Lizenz anzeigen

Deep Learning is powerful approach to segment complex medical image.
This demo shows how to prepare pixel label data for training, and how to create, train and evaluate VGG-16 based
SegNet to segment blood smear image into 3 classes – blood parasites, blood cells and background.
医用画像処理において、Deep Learningは非常に強力なアプローチの一つです。
本デモでは、ネットワーク学習のためのラベル画像の準備、SegNetの作成と学習、そして評価までの一連の流れをご紹介します。使用する画像は血液塗抹標本画像で、この画像をSegNetを用いて3クラス(赤血球、病原虫、背景)に分割します。

[Keyward] 画像処理・セグメンテーション・ディープラーニング・DeepLearning・デモ・IPCVデモ
・ニューラルネットワーク・医用画像

Zitieren als

Kei Otsuka (2024). Medical Image Segmentation Using SegNet (https://www.mathworks.com/matlabcentral/fileexchange/66448-medical-image-segmentation-using-segnet), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2017b
Kompatibel mit R2017b bis R2020a
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

medImgSegNet

medImgSegNet

Version Veröffentlicht Versionshinweise
1.0.0.2

Fixed compatibility issue

1.0.0.1

updated to make it compatible with R2018b

1.0.0.0