Discrete-time Periodic Riccati Equation (DPRE)

Discrete-time periodic Riccati equation solver for periodic LQ state-feedback design
960 Downloads
Aktualisiert 20. Apr 2021

These functions solve the Discrete-time Periodic Riccati Equation (DPRE) for periodic LQ state-feedback design. The functions compute the unique stabilizing solution X{k} of the discrete-time periodic Riccati equation and also returns the gain matrix K{k} in the state-feedback u{k} = -K{k}x{k}, where k = 1:P.

The m-file "dpre" solves the discrete-time periodic optimal control problem by a cyclic QZ or a Newton backward iteration method. These are not the fastest methods available, but work quite well.

The mex-file "dprex" solves the discrete-time periodic optimal control problem by a periodic QR (using functions from matlab's internal slicot library) or a complex periodic QC method (using converted fortran to c code from the pqzschur library). The mex-file implementation is much faster, but requires compilation of the mex file which can be done by running make_dprex.m.

Zitieren als

Ivo Houtzager (2024). Discrete-time Periodic Riccati Equation (DPRE) (https://github.com/iwoodsawyer/dpre/releases/tag/v2.0.0.1), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2020b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu State-Space Control Design and Estimation finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
2.0.0.1

See release notes for this release on GitHub: https://github.com/iwoodsawyer/dpre/releases/tag/v2.0.0.1

2.0.0.0

See release notes for this release on GitHub: https://github.com/iwoodsawyer/dpre/releases/tag/v2.0.0.0

1.0.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.