State Estimation under Multi-Rate Sensing: IEEE ACCESS 2023

MATLAB implementation of the multirate state observer design method.
5 Downloads
Aktualisiert 4. Jan 2026

Lizenz anzeigen

MATLAB implementation of the multirate state observer design method presented in the IEEE ACCESS paper "State Observer Under Multi-Rate Sensing Environment and Its Design Using l2-Induced Norm" (DOI:https://doi.org/10.1109/ACCESS.2023.3249187).
This toolkit enables state estimation for systems with multiple outputs sampled at different rates—a common scenario in modern networked control systems, sensor networks, and multi-sensor fusion applications.
Key Features:
- State observer design for asynchronous multi-rate measurements
- l2-induced norm based performance optimization
- Handles outputs with different sampling intervals (e.g., y1 every 2 steps, y2 every 6 steps)
- Comprehensive visualization of:
- True vs. estimated states
- Estimation errors for each state
- Multi-rate output measurements
- Input signals
- Numerical example from the paper included for validation
- Easily adaptable to custom system models and sampling patterns
Technical Highlights:
- Rigorous observer design based on lifted system representation
- Guaranteed estimation performance via l2-induced norm framework
- Robust to measurement timing variations
Perfect for:
- Networked control systems research
- Multi-sensor fusion applications
- Aperiodic/event-triggered sensing systems
- Industrial IoT and cyber-physical systems
Reference: H. Okajima, et al., "State Observer Under Multi-Rate Sensing Environment and Its Design Using l2-Induced Norm," IEEE ACCESS, 2023. DOI: 10.1109/ACCESS.2023.3249187
Compatible with MATLAB R2016b and later. Requires Control System Toolbox.

Zitieren als

Hiroshi Okajima (2026). State Estimation under Multi-Rate Sensing: IEEE ACCESS 2023 (https://de.mathworks.com/matlabcentral/fileexchange/182941-state-estimation-under-multi-rate-sensing-ieee-access-2023), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2023b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Tags Tags hinzufügen
Version Veröffentlicht Versionshinweise
1.0.1

Change title

1.0.0