How to create a histogram without using the matlab function

7 Ansichten (letzte 30 Tage)
Ole
Ole am 28 Feb. 2020
Kommentiert: Ole am 1 Mär. 2020
How to create a histogram without using the matlab hist function.
Given scattered data x = randn(1,100); y = randn(1,100);
with coresponding phase p = randn(1,100), having phase phase = exp(1i*p);
would like to create uniform grid, add the phase for the data points that are inside each bin.
This is to create a na intensity plot or coherent sum of the scattered data.
  7 Kommentare
Guillaume
Guillaume am 1 Mär. 2020
@Ole, can you give a formal mathematical definition of what it is you want to calculate for a bin, because as you can see we're a bit confused.
Ole
Ole am 1 Mär. 2020
There is scatted data (points) in space given as vectors x, y. Let say we discretize the data and in each bin (pixel) fall a set of points {x(k), y(k)}. Each point x(k), y(k) is associated with phase exp(1i*p(k)). In each bin (n,m) I would like to sum the phases for the points that fall inside the bin {x(k), y(k)} -> sum( exp(1i*p(k)) ). So the out put is a matrix M(n,m) that is with reduced size because of the binning and the values of the matrix are M(n,m) = sum( exp(1i*p(k)) ). And would like also to have the number of points x(k), y(k) that are in n,m bin (what histogram does).

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Guillaume
Guillaume am 1 Mär. 2020
As Steven said, use discretize to find the bin indices and then one of the many aggregation functions in matlab. With 3 vector inputs, I'd use the older accumarray:
%demo data and bin definitions
x = randn(1, 100);
y = randn(1, 100);
p = randn(1, 100);
phase = exp(1i*p);
xedges = [-Inf, -3:3, +Inf]; %there will be one less bin that there are edges
yedges = [-Inf, -3:3, +Inf]; %see documentation of discretize
%histogram building
destrow = discretize(y, ybins);
destcol = discretize(x, xbins);
phasehistogram = accummaray([destrow, destcol], phase, [numel(ybins), numel(xbins)] - 1);
Or you could put the vectors in a table, and call groupsummary which would do the binning and summing for you:
%demo data and bin definitions
x = randn(1, 100);
y = randn(1, 100);
p = randn(1, 100);
phase = exp(1i*p);
xedges = [-Inf, -3:3, +Inf]; %there will be one less bin that there are edges
yedges = [-Inf, -3:3, +Inf]; %see documentation of discretize
%table construction and histogram:
phasetable = table(x, y, phase);
phasehistogram = groupsummary(phasetable, {'x', 'y'}, {xedges, yedges}, 'sum', 'phase');

Weitere Antworten (1)

Steven Lord
Steven Lord am 28 Feb. 2020
Consider using discretize to bin the data then passing that grouping information into groupsummary or splitapply.

Kategorien

Mehr zu Data Distribution Plots finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by