Re-write repeated values of a matrix using intermediate increased values
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Cesar Antonio Lopez Segura
am 5 Sep. 2018
Bearbeitet: Cesar Antonio Lopez Segura
am 6 Sep. 2018
Hi all, I have some problems to rewrite a matrix with the values that I need. The following code do this:
- Step0 = a matrix is created
- Step1 = sort my matrix with ascend order
- Step2 = create a mask with zeros
- Step3 = here mask is rewrited with zeros just in repeated values positions
- Step4 = create a matrix with repeated values changed by zeros.
- Step5 = need to rewrite zero values with intermediate increased values (help me here !!)
%%step0: My matrix
A = [ 1 1 1 1 2 2 3 4 5 7 5;
3 3 6 5 4 1 5 7 8 9 1 ] ;
%%step1: sort my matrix ascend order
Asorted = sort(A,2);
%%step2: create a mask
Mask = zeros( size(Asorted,1),size(Asorted,2));
%%step3: Now Mask is rewrited with zeros in repeated values positons
for i = 1: size(Asorted,1)
[ C,ia,ic ] = unique( Asorted(i,:) );
Mask( i, ia ) = 1;
end
%%step4: vlaues are sorted with repeat val eliminated
AsortedWihtoutRepeat = Asorted.*Mask
% step5: Now we need to rewrite zero values with intermediate increased values
% RewritedMatrix = ??
Step4 results:
AsortedWihtoutRepeat =
1 0 0 0 2 0 3 4 5 0 7
1 0 3 0 4 5 0 6 7 8 9
Now I need to rewrite zeros by intermediate values, for example:
AsortedWihtoutRepeat(1,2) = value been value bigger than 1 and lower than 2. AsortedWihtoutRepeat(1,3) = value been value bigger than 1 and lower than 2.
And I need that position (1,2) and (1,3) will be increased values.
Step5 example:
RewritedMatrix =
1 1.1 1.5 1.7 2 2.5 3 4 5 6 7
1 2 3 3.5 4 5 5.5 6 7 8 9
0 Kommentare
Akzeptierte Antwort
Guillaume
am 5 Sep. 2018
Bearbeitet: Guillaume
am 5 Sep. 2018
Another option is to use fillmissing with the 'linear' option (which under the hood does call interp1 similar to Stephen's answer). You can simplify your code to:
A = [ 1 1 1 1 2 2 3 4 5 7 5;
3 3 6 5 4 1 5 7 8 9 1 ] ;
%step 1:
Asorted = sort(A, 2);
%step 2, 3 and 4 combined:
Asorted([false(size(A, 1), 1), diff(Asorted, [], 2) == 0]) = NaN;
%step 5:
Afinal = fillmissing(Asorted', 'linear')' %has to transpose since fillmissing works on columns
Note that if you worked on columns rather than rows, the whole code would be simpler:
A = [ 1 1 1 1 2 2 3 4 5 7 5;
3 3 6 5 4 1 5 7 8 9 1 ]'; %transposed A
Asorted = sort(A);
Asorted([false(1, size(A, 2)); diff(A) == 0]) = NaN;
Afinal = fillmissing(Asorted, 'linear')
Weitere Antworten (1)
Stephen23
am 5 Sep. 2018
Bearbeitet: Stephen23
am 5 Sep. 2018
>> vec = [1,0,0,0,2,0,3,4,5,0,7]; % one row of the matrix
>> idx = vec~=0;
>> out = interp1(find(idx),vec(idx),1:numel(vec))
out =
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 4.0000 5.0000 6.0000 7.0000
Put that in a for loop and you can apply it to each matrix row.
5 Kommentare
Stephen23
am 5 Sep. 2018
Bearbeitet: Stephen23
am 5 Sep. 2018
@Cesar Antonio Lopez Segura: somehow you have changed your algorithm. In your original question you gave this example matrix:
AsortedWihtoutRepeat =
1 0 0 0 2 0 3 4 5 0 7
1 0 3 0 4 5 0 6 7 8 9
But when I actually run your code I get this matrix:
AsortedWihtoutRepeat =
0 0 0 1 0 2 3 4 0 5 7
0 1 0 3 4 0 5 6 7 8 9
Given your different input arrangement, there is no reason to expect the same output.
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!