represent differencital equation with ode45
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
jose luis guillan suarez
am 20 Mai 2018
Bearbeitet: KARTHIK
am 15 Nov. 2023
i got this differential equation:
function xdot=tresorden(t,x)
xdot=zeros(3,1);
Vp=5;
Vi=Vp*square(2*pi*t)+5;
xdot(1)=x(2);
xdot(2)=x(3);
xdot(3)=6*Vi-6*x(1)-11*x(2)-6*x(3);
xdot=[xdot(1);xdot(2);xdot(3)];
how can i represent x(1)?
2 Kommentare
Anderson Francisco Silva
am 29 Aug. 2020
And if he wanted to use the last vector, to be entered in another function he could do it like this? :
xdot(3)=6*Vi-6*x(1)-11*x(2)-6*x(3);
x_dot=[xdot(1);xdot(2);xdot(3)]; (I chance the name of vector, for no replaces xdot)
Akzeptierte Antwort
jose luis guillan suarez
am 29 Mai 2018
Bearbeitet: jose luis guillan suarez
am 29 Mai 2018
6 Kommentare
Weitere Antworten (3)
Jan
am 20 Mai 2018
Bearbeitet: Jan
am 29 Mai 2018
This integrates the function from the start point x=[1,2,3] over the time 0 to 7:
[EDITED - bug concerning t.' fixed]
function main
[t, x] = ode45(@tresorden, [0, 7], [1,2,3]);
plot(t, x(:, 1));
xdot = tresorden(t.', x.').';
end
function xdot = tresorden(t, x)
Vp = 5;
Vi = Vp * (2*pi*t)^2 + 5; % Or what is square() ?
xdot = [x(2, :); ...
x(3, :); ...
6 * Vi - 6 * x(1, :) - 11 * x(2, :) - 6 * x(3, :)];
end
Note: Due to square you are integrating a non-smooth system. This causes numerical instabilities. See http://www.mathworks.com/matlabcentral/answers/59582#answer_72047.
0 Kommentare
jose luis guillan suarez
am 21 Mai 2018
1 Kommentar
Jan
am 21 Mai 2018
Sure? I'd expect:
xdot(1) = x(2);
xdot(2) = x(3);
xdot(3) = Vi - 6*x(3) - 11*x(2) - 6*x(1);
if you convert the 3rd order equation to a system of 1st order.
But even then: ODE45 is used to solve initial value problems numerically. If you want the values of x(1), you need to run the integration from an initial value.
Please do not post parts of the question in the section for answer. And explain, what "represent differencital equation with ode45" means exactly.
jose luis guillan suarez
am 22 Mai 2018
Bearbeitet: jose luis guillan suarez
am 22 Mai 2018
11 Kommentare
Jan
am 27 Mai 2018
@jose: You have posted and removed another equation formerly. The solution of how to get the 3rd derivative has been given repeatedly and it even occurs in the original question.
Currently my best assumption is that your "numerical checking" contains a mistake.
i checked numerically and the [...] it's not the 3rd derivative.
My best assumption is that your "numerical check" contains a mistake.
After 6 days it could not be clarified, what the actual question is or why the obvious and already posted solution does not satisfy you. Therefore I will leave this thread now.
Siehe auch
Kategorien
Mehr zu General Applications finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!








