Piecewise Polynomial fitting for data
32 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I need to use curve fitting on a time series data, as the data is large (a week), fitting a single polynomial curve will not represent the true data. Therefore, solution i can come up with (i don't know if there exists such a solution) I have to fit the data for first 24 hours (a reading at every half hour so 48 data points during a day) and keep the loop running for all 7 days (the data is in a single file). I have tried to code it but am getting error and secondly i cannot understand how to save results for all loops as i will need to reconstruct the fitted curve so i need the data and i will need the RMSE for each curve. Also is there a way to determine which polynomial fits the data best ie.e. minimum RMSE without applying all of polynomial fittings programatically.
The code i could think of is given below, I will appreciate if some one can help me with it.
i=7
j=48
for i=1:7
for j=1:48:48
[Fit5, gof5] = fit( x([1:j]), y([1:j]), 'poly5' );
coeff5=coeffvalues(Fit5);
end
end
0 Kommentare
Antworten (3)
dpb
am 12 Mai 2017
Fitting a polynomial is probably not going to work all that well and certainly a fifth-order one is likely quite unstable.
W/o data to see what it is the curve looks like, hard to give any real conclusive answer, but if the purpose is interpolation, consider piecewise splines instead.
That aside, your code above has a problem with j=1:48:48 as a loop count expression; it is just j=1
Altho it is not my recommendation to do this (see above note), a more concise way to operate over your set of equi-spaced data would be to reshape the vectors to 2D array and operate by column...
x=reshape(x,48,[]).'; % arrange x, y by day (48 observations/day)
y=reshape(y,48,[]).'; % as column arrays
nc=size(x,2) % number columns --> days
nDeg=5; % the poly degree (your value, see above notes)
b=zeros(nDeg+1,nc)) % allocate room for the coefficients
for i=1:nc
b(:,i)=polyfit(x(:,i),y(:,i),nDeg); % and do the fitting
end
Undoubtedly the above will give some numerical issues warnings; (see notes above) but if you're adamant about trying, use the optional output variables as documented for polyfit to at least standardize the design matrix before solving. Then you'll need to add to the saved results the output structure returned to use for the evaluation similarly as to the coefficients array above.
Did I say I don't recommend this, yet? :) Look at splines and give us a sample (smallish) dataset...
13 Kommentare
Image Analyst
am 13 Mai 2017
See my canned Savitzky-Golay filter demos, attached. Don't use a filter order more than about 2 or 3 or you won't see much smoothing. A 5th order polynomial will hug the curve fairly closely and not provide much smoothing.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!