Hi, I am finding area enclosed by convex hull using delayunaytriangulation,,,i have pasted the code...I just need someone to tell me..the area i got is right according to my code?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
theta1=[88,89,90,91,92,94,96,94,90,89,-100,-102,-104,-105,-104,-102,-101,-100];
radius1=[5,7,11,17,26,39,46,44,32,3,0,18,34,32,33,29,28,20];
%subplot(211)
theta_rad=theta1*pi/180;
polar(theta_rad, radius1, 'b*');
hold on;
[x, y] = pol2cart(theta_rad, radius1);
k = convhull(x, y);
xch = x(k);
ych = y(k);
[thetaCH1, rhoCH1] = cart2pol(xch, ych);
%subplot(212)
polar(thetaCH1, rhoCH1, 'ro-');
DT = delaunayTriangulation(theta_rad(:),radius1(:));
[U,v]=convexHull(DT);
i got v=130.8648.... is it the right way to do it ?
0 Kommentare
Akzeptierte Antwort
John D'Errico
am 20 Mär. 2017
NO. You cannot compute a convex hull of your points when they are represented in polar coordinates!!!!! If you did, the result will be nonsensical. And the area it would compute will certainly be nonsense.
Instead, convert the polar coordinates to cartesian coordinates, then compute the area of the convex hull in Cartesian coordiantes:
DT = delaunayTriangulation(x(:),y(:));
[H,A] = convexHull(DT);
A =
390.270316856299
8 Kommentare
Image Analyst
am 21 Mär. 2017
Another quirk of polyarea is that if the perimeter overlaps, you can have a negative area there. For example, the area of a perfect bowtie shape is zero according to polyarea.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Bounding Regions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!