Solving difference equation with its initial conditions
20 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
Consider a difference equation:
8*y[n] - 6*y[n-1] + 2*y[n-2] = 1
with initial conditions
y[0]= 0 and y[-1]=2
How can I determine its plot y(n) in Matlab? Thank you in advance for your help!
2 Kommentare
John D'Errico
am 19 Feb. 2017
Surely you can use a loop? Why not make an effort? You have the first two values, so a simple loop will suffice.
More importantly, you need to spend some time learning MATLAB. Read the getting started tutorials. It is apparent that you don't know how to even use indexing in MATLAB, nor how to use a for loop.
You will need to recognize that MATLAB does NOT allow zero or negative indices.
Akzeptierte Antwort
Jan
am 21 Feb. 2017
Bearbeitet: Jan
am 21 Feb. 2017
Resort the terms:
8*y[n] - 6*y[n-1] + 2*y[n-2] = 1
y[n] = (1 + 6*y[n-1] - 2*y[n-2]) / 8
or in Matlab:
y(n) = (1 + 6*y(n-1) - 2*y(n-2)) / 8;
Now the indices cannot start at -1, because in Matlab indices are greater than 0. This can be done by a simple translation:
y = zeros(1, 100); % Pre-allocate
y(1:2) = [2, 0];
for k = 3:100
y(k) = (1 + 6*y(k-1) - 2*y(k-2)) / 8;
end
Now you get the y[i] by y(i+2).
1 Kommentar
Weitere Antworten (1)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!