How do I calculate a mean value of a vector and ignore from the "0" when appears inside the vectors?
17 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Tzahi Shukrun
am 24 Sep. 2016
Kommentiert: Image Analyst
am 22 Jun. 2020
Hello.
I need to calculate a mean value of a velocity vector. The vector contains a damaged cells which appears as "0" inside the vector. How do I calculate a mean value of a vector and ignore from the "0" when appears inside the vectors?
0 Kommentare
Akzeptierte Antwort
Star Strider
am 24 Sep. 2016
If you have a recent release (I don’t remember when the 'omitnan' option appeared) or the Statistics and Machine Learning Toolbox nanmean function you can change the zeros to NaN and use those functions:
V = randi([0 9], 5)
V(V==0)= NaN
Out_1 = nanmean(V)
Out_2 = mean(V, 'omitnan')
V =
0 4 6 0 4
1 5 1 9 3
6 2 3 7 5
7 7 6 4 5
6 1 7 4 8
V =
NaN 4 6 NaN 4
1 5 1 9 3
6 2 3 7 5
7 7 6 4 5
6 1 7 4 8
Out_1 =
5 3.8 4.6 6 5
Out_2 =
5 3.8 4.6 6 5
The problem with the logical indexing approach is that it defaults to ‘linear indexing’ because the rows and columns are no longer equal. That produces a vector argument to the mean function, and the mean of the vector.
4 Kommentare
Weitere Antworten (4)
George
am 24 Sep. 2016
Bearbeitet: George
am 27 Sep. 2016
Replacing the 0s with NaN and using the 'omitnan' flag should do what you want.
>> A
A =
NaN NaN 11.6780 NaN NaN NaN NaN -23.3560 -35.0340 -42.8200
NaN NaN NaN NaN NaN NaN NaN -7.7850 -7.7850 -15.5710
NaN NaN NaN NaN NaN NaN 3.8930 NaN -3.8930 -15.5710
NaN NaN NaN NaN NaN NaN -3.8930 NaN NaN 15.5710
NaN NaN NaN NaN NaN NaN NaN -3.8930 -11.6780 -15.5710
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN -19.4630 -35.0340 -54.4980
NaN NaN NaN NaN NaN NaN NaN NaN -3.8930 -15.5710
NaN NaN NaN NaN NaN NaN NaN 3.8930 7.7850 11.6780
NaN NaN NaN NaN NaN NaN NaN -3.8930 -11.6780 -19.4630
NaN NaN NaN NaN NaN NaN NaN NaN -3.8930 NaN
NaN NaN NaN NaN NaN NaN NaN -3.8930 -3.8930 -11.6780
NaN NaN NaN NaN NaN NaN NaN -3.8930 -3.8930 -7.7850
NaN NaN NaN NaN NaN NaN NaN NaN -7.7850 -15.5710
NaN NaN NaN NaN NaN NaN NaN NaN NaN 7.7850
Trial>> meanCols = mean(A, 'omitnan')
meanCols =
NaN NaN 11.6780 NaN NaN NaN 0 -7.7854 -10.0562 -13.7742
>>
2 Kommentare
Image Analyst
am 24 Sep. 2016
Bearbeitet: Image Analyst
am 24 Sep. 2016
Try this
meanVelocity = mean(allVelocities(allVelocities ~= 0))
3 Kommentare
Image Analyst
am 24 Sep. 2016
No it doesn't. It gives the means of only the non-zero elements of your vector. But now you've changed your question. Now you're saying that you have a matrix, NOT a vector. In that case, I'd use mean with the omitnan option after you've set 0's to nans, exactly what Star showed.
allVelocities(allVelocities == 0) = nan;
meanVelocity = mean(allVelocities, 'omitnan')
Note, in the above, allVelocities is a matrix (as in your comment), not a vector as you originally said. And meanVelocity is the column over rows (that is, going down columns) so you have one mean for every column.
Jan
am 26 Sep. 2016
Bearbeitet: Jan
am 26 Sep. 2016
You do not have to replace the zeros by NaNs, because the zeros are neutral for the SUM already:
sum(A, 1) ./ sum(A ~= 0, 1)
2 Kommentare
Jan
am 28 Sep. 2016
@Thorsten: Exactly. Therefore you divide by the number of non-zeros and not by the number of elements. The posted code does exactly this.
Suraj Sudheer Menon
am 22 Jun. 2020
All non zero elements can be stored in another location using logical indexing and mean operation can be performed.
temp=A(A~=0); %stores the non zero values in temp.
ans=sum(temp)/nnz(A) ; %nnz returns number of non zero elements.
1 Kommentar
Image Analyst
am 22 Jun. 2020
But since the sum of any number of zeros is still zero, the sum of A will be the sum of temp. So temp is not necessary, and you'd get the same thing from
ans=sum(A(:))/nnz(A) ;
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!