How to input pi

3.063 Ansichten (letzte 30 Tage)
Anthony
Anthony am 20 Sep. 2016
Kommentiert: Walter Roberson am 27 Jul. 2024
How can i enter pi into an equation on matlab?
  2 Kommentare
Vignesh Shetty
Vignesh Shetty am 6 Apr. 2020
Hi Anthony!
Its very easy to get the value of π. As π is a floating point number declare a long variable then assign 'pi' to that long variable you will get the value.
Eg:-
format long
p=pi
Walter Roberson
Walter Roberson am 16 Dez. 2022
That is what @Geoff Hayes suggested years before. But it does not enter π into the calculation, only an approximation of π

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Geoff Hayes
Geoff Hayes am 20 Sep. 2016
Bearbeitet: MathWorks Support Team am 28 Nov. 2018
Anthony - use pi which returns the floating-point number nearest the value of π. So in your code, you could do something like
sin(pi)

Weitere Antworten (5)

Essam Aljahmi
Essam Aljahmi am 31 Mai 2018
Bearbeitet: Walter Roberson am 31 Mai 2018
28t2e0.3466tcos(0.6πt+π3)ua(t).
  5 Kommentare
Image Analyst
Image Analyst am 20 Okt. 2018
Attached is code to compute Ramanujan's formula for pi, voted the ugliest formula of all time.
.
Actually I think it's amazing that something analytical that complicated and with a variety of operations (addition, division, multiplication, factorial, square root, exponentiation, and summation) could create something as "simple" as pi.
Unfortunately it seems to get to within MATLAB's precision after just one iteration - I'd have like to see how it converges as afunction of iteration (summation term). (Hint: help would be appreciated.)
John D'Errico
John D'Errico am 28 Nov. 2018
Bearbeitet: John D'Errico am 28 Nov. 2018
As I recall, these approximations tend to give a roughly fixed number of digits per term. I'll do it using HPF, but syms would also work.
DefaultNumberOfDigits 500
n = 10;
piterms = zeros(n+1,1,'hpf');
f = sqrt(hpf(2))*2/9801*hpf(factorial(0));
piterms(1) = f*1103;
hpf396 = hpf(396)^4;
for k = 1:n
hpfk = hpf(k);
f = f*(4*hpfk-3)*(4*hpfk-2)*(4*hpfk-1)*4/(hpfk^3)/hpf396;
piterms(k+1) = f*(1103 + 26390*hpfk);
end
piapprox = 1./cumsum(piterms);
pierror = double(hpf('pi') - piapprox))
pierror =
-7.6424e-08
-6.3954e-16
-5.6824e-24
-5.2389e-32
-4.9442e-40
-4.741e-48
-4.5989e-56
-4.5e-64
-4.4333e-72
-4.3915e-80
-4.3696e-88
So roughly 8 digits per term in this series. Resetting the default number of digits to used to 1000, then n=125, so a total of 126 terms in the series, we can pretty quickly get a 1000 digit approximation to pi:
pierror = hpf('pi') - piapprox(end + [-3:0])
pierror =
HPF array of size: 4 1
|1,1| -1.2060069282720814803655e-982
|2,1| -1.25042729756426e-990
|3,1| -1.296534e-998
|4,1| -8.e-1004
So as you see, it generates a very reliable 8 digits per term in the sum.
piapprox(end)
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
hpf('pi')
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
I also ran it for 100000 digits, so 12500 terms. It took a little more time, but was entirely possible to compute. I don't recall which similar approximation I used some time ago, but I once used it to compute 1 million or so digits of pi in HPF. HPF currently stores a half million digits as I recall.
As far as understanding how to derive that series, I would leave that to Ramanujan, and only hope he is listening on on this.

Melden Sie sich an, um zu kommentieren.


Walter Roberson
Walter Roberson am 20 Okt. 2018
If you are constructing an equation using the symbolic toolbox use sym('pi')
  3 Kommentare
James Emmanuelle Galvan
James Emmanuelle Galvan am 22 Okt. 2021
sym(pi) prints out "pi".
Steven Lord
Steven Lord am 22 Okt. 2021
That's correct. There are four different conversion techniques the sym function uses to determine how to convert a number into a symbolic expression. The default is the 'r' flag which as the documentation states "converts floating-point numbers obtained by evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q (for modest sized integers p and q) to the corresponding symbolic form."
The value returned by the pi function is "close enough" to p*pi/q (with p and q both equal to 1) for that conversion technique to recognize it as π. If you wanted the numeric value of the symbolic π to some number of decimal places use vpa.
p = sym(pi)
p = 
π
vpa(p, 30)
ans = 
3.14159265358979323846264338328

Melden Sie sich an, um zu kommentieren.


Dmitry Volkov
Dmitry Volkov am 16 Dez. 2022
Easy way:
format long
p = pi
  1 Kommentar
Walter Roberson
Walter Roberson am 16 Dez. 2022
That is what @Geoff Hayes suggested years before. But it does not enter π into the calculation, only an approximation of π

Melden Sie sich an, um zu kommentieren.


AKHIL TONY
AKHIL TONY am 1 Aug. 2023
using pi will give an approximate value
  1 Kommentar
Walter Roberson
Walter Roberson am 1 Aug. 2023
Yes, multiple people pointed that out years ago

Melden Sie sich an, um zu kommentieren.


Meghpara
Meghpara am 27 Jul. 2024
it is easy to ge pi
in p=PI.
  1 Kommentar
Walter Roberson
Walter Roberson am 27 Jul. 2024
p=PI
Unrecognized function or variable 'PI'.
If you meant
p=pi

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Elementary Math finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by