How to avoid the warnings on my code

2 Ansichten (letzte 30 Tage)
Left Terry
Left Terry am 30 Dez. 2024
Bearbeitet: John D'Errico am 30 Dez. 2024
Hello. I have the following code and i get a few warnings. How do i fix this problem ? (I used this warning('off','all')
warning but i think it's cheating and i do not prefer it)
%--- Solving the diff. eqn. y'(t) = y(t) - c*y^2(t) with c = 0.5 using
%--- Euler's method, Runge - Kutta method, and predictor-corrector method, and comparing in graph. I have four
%--- initial values for N0
clc, clear all, close all
tmax = 100;
t = [0:tmax];
N0 = [0.1 0.5 1.0 2.0];
f = @(t,N) N - 0.5*N.^2;
h = 0.1;
L = length(t)-1;
N = zeros(1,L);
%--- Euler's method ---
for i = 1:length(N0)
for j = 1:L
N(1) = N0(i);
N(1,j+1) = N(j) + h*f(':',N(j));
end
ylim([0 2.5])
subplot(1,3,1), plot(t,N), str = {'Euler''s method','for the following initial conditions'}; text(40,0.5,str); hold on
title('N'' = N - cN^2, c = 0.5')
xlabel('t'), ylabel('N(t)')
legend('y_0 = 0.1','y_0 = 0.5','y_0 = 1.0','y_0 = 2.0','Location','Best')
end
Warning: Ignoring extra legend entries.
Warning: Ignoring extra legend entries.
Warning: Ignoring extra legend entries.
%--- Runge - Kutta method ---
for i = 1:length(N0)
N(1) = N0(i);
for j = 1:tmax
K1 = f(t(j),N(j));
K2 = f(t(j) + h*0.5, N(j) + h*K1*0.5);
K3 = f(t(j) + h*0.5, N(j) + h*K2*0.5);
K4 = f(t(j) + h, N(j) + h*K3);
N(j+1) = N(j) + h*((K1 + K4)/6 + (K2 + K3)/3);
end
ylim([0 2.5])
subplot(1,3,2), plot(t,N), str = {'Runge - Kutta method','for the following initial conditions'}; text(40,0.5,str); hold on
title('N'' = N - cN^2, c = 0.5')
xlabel('t'), ylabel('N(t)')
legend('y_0 = 0.1','y_0 = 0.5','y_0 = 1.0','y_0 = 2.0','Location','Best')
end
Warning: Ignoring extra legend entries.
Warning: Ignoring extra legend entries.
Warning: Ignoring extra legend entries.
  1 Kommentar
John D'Errico
John D'Errico am 30 Dez. 2024
Bearbeitet: John D'Errico am 30 Dez. 2024
Lol. You can call it cheating to turn the warnings off. But I'd just call it dangerous in a sense, in that warnings were put there for a reason, to tell you that something bad is probably happening, and you should fix the problem.
Do you really want to turn off the warning light on your car that tells you it is overheating? Or just close your eyes to those warning signs about the bridge being out? ;-) I think you are right. Better to fix the problem.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 30 Dez. 2024
Bearbeitet: Torsten am 30 Dez. 2024
%--- Solving the diff. eqn. y'(t) = y(t) - c*y^2(t) with c = 0.5 using
%--- Euler's method, Runge - Kutta method, and predictor-corrector method, and comparing in graph. I have four
%--- initial values for N0
clc, clear all, close all
tmax = 100;
t = [0:tmax];
N0 = [0.1 0.5 1.0 2.0];
f = @(t,N) N - 0.5*N.^2;
h = 0.1;
L = length(t)-1;
N = zeros(1,L);
%--- Euler's method ---
for i = 1:length(N0)
for j = 1:L
N(1) = N0(i);
N(1,j+1) = N(j) + h*f(':',N(j));
end
subplot(1,3,1), plot(t,N), hold on
end
str = {'Euler''s method','for the following initial conditions'}; text(40,0.5,str);
ylim([0 2.5])
title('N'' = N - cN^2, c = 0.5')
xlabel('t'), ylabel('N(t)')
legend({'y_0 = 0.1','y_0 = 0.5','y_0 = 1.0','y_0 = 2.0'},'Location','Best')
%--- Runge - Kutta method ---
for i = 1:length(N0)
N(1) = N0(i);
for j = 1:tmax
K1 = f(t(j),N(j));
K2 = f(t(j) + h*0.5, N(j) + h*K1*0.5);
K3 = f(t(j) + h*0.5, N(j) + h*K2*0.5);
K4 = f(t(j) + h, N(j) + h*K3);
N(j+1) = N(j) + h*((K1 + K4)/6 + (K2 + K3)/3);
end
subplot(1,3,2), plot(t,N), hold on
end
str = {'Runge - Kutta method','for the following initial conditions'}; text(40,0.5,str);
ylim([0 2.5])
legend({'y_0 = 0.1','y_0 = 0.5','y_0 = 1.0','y_0 = 2.0'},'Location','Best')
title('N'' = N - cN^2, c = 0.5')
xlabel('t'), ylabel('N(t)')

Weitere Antworten (0)

Tags

Produkte


Version

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by