moving median with variable window

4 Ansichten (letzte 30 Tage)
Michal
Michal am 23 Sep. 2024
Kommentiert: Bruno Luong am 25 Sep. 2024
Is there any way how to effectively generalize movmedian function to work with variable window length or local variable k-point median values, where k is vector with the same length as length of input vector (lenght(x) = lenght(k))?
Example:
x = 1:6
k = 2,3,3,5,3,2
M = movmedian_vk(x,k)
M = 1, 2, 3, 4, 5, 5.5
My naive solution looks like:
function M = movmedian_vk(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
  2 Kommentare
Image Analyst
Image Analyst am 23 Sep. 2024
Can you explain the use case? Why do you want to do this?
Michal
Michal am 24 Sep. 2024
Bearbeitet: Michal am 24 Sep. 2024
Robust and effective trend extraction in a case of a priori known 1-D signal parts with high slope changes (typicaly by active control of dynamic system). Median filter then used short window in a case of active control and long windows in opposite case.
But after some additional test I learned that this naive approch is not suitable for reliable trend estimation.
Anyway, I will be very happy for any hint how to apply robust median filter on my use case, where separate parts of signal shoud be filtered with different filter windows (something like weighting).

Melden Sie sich an, um zu kommentieren.

Antworten (3)

Bruno Luong
Bruno Luong am 23 Sep. 2024
Bearbeitet: Bruno Luong am 23 Sep. 2024
One way (for k not very large)
x = 1:6
x = 1×6
1 2 3 4 5 6
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
k = [2,3,4,5,3,2]; % Note: I change k(3) to 4
winmedian(x,k)
ans = 1×6
1.0000 2.0000 2.5000 4.0000 5.0000 5.5000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
function mx = winmedian(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
  7 Kommentare
Matt J
Matt J am 24 Sep. 2024
Bearbeitet: Matt J am 24 Sep. 2024
When there are a small number of unique k(i), yes, yours is best. However, more generally, Bruno's is faster:
k = randi(30,1,1e5);
x = rand(1,1e5);
timeit(@() winmedianMichal(x,k))
ans = 0.0579
timeit(@() winmedianBruno(x,k))
ans = 0.0371
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
function mx = winmedianBruno(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
Michal
Michal am 24 Sep. 2024
@Matt J Good point...

Melden Sie sich an, um zu kommentieren.


Matt J
Matt J am 23 Sep. 2024
Bearbeitet: Matt J am 24 Sep. 2024
x = rand(1,6)
x = 1×6
0.1034 0.9884 0.6244 0.0233 0.2999 0.6556
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
k = [2,3,3,5,3,2];
n=numel(x);
J=repelem(1:n,k);
I0=1:numel(J);
splitMean=@(vals,G) (accumarray(G(:),vals(:))./accumarray(G(:),ones(numel(vals),1)))';
cc=repelem( round(splitMean( I0,J )) ,k);
zz=min(max(I0-cc+J+1,1),n+2);
vals=[nan,x,nan];
vals=vals(zz);
I=I0-repelem( find(diff([0,J]))-1 ,k);
X=accumarray([I(:),J(:)], vals(:), [max(k),n],[],nan);
M = median(X,1,'omitnan')
M = 1×6
0.1034 0.6244 0.6244 0.6244 0.2999 0.4777
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Matt J
Matt J am 24 Sep. 2024
Bearbeitet: Matt J am 24 Sep. 2024
Anyway, I will be very happy for any hint how to apply robust median filter on my use case, where separate parts of signal shoud be filtered with different filter windows (something like weighting).
If your movmedian windows are simply varying over a small sequence of consecutive intervals, then the code below shows a little bit of speed-up. It won't give the exact same output near the break points between intervals, but it should be fairly close.
x = rand(1,1e5);
k = 8000*ones(1,1e5);
k(20000:30000) =50;
k(18000:20000) =200;
k(30000:32000) =200;
timeit(@() winmedianMichal(x,k))
ans = 0.0134
timeit(@() winmedianMatt(x,k))
ans = 0.0097
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
%Requires download of groupConsec
%https://www.mathworks.com/matlabcentral/fileexchange/78008-tools-for-processing-consecutive-repetitions-in-vectors
function M = winmedianMatt(x,k)
M=splitapply(@(a,b){movmedian(a,b(1))}, x,k, groupConsec(k));
M=[M{:}];
end
  5 Kommentare
Michal
Michal am 25 Sep. 2024
@Bruno Luong Could you add the reference on the Weiss paper?
Bruno Luong
Bruno Luong am 25 Sep. 2024
Done; somehow this Answers forum and firefox have issue when I edit it, must use another browser.

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by