moving median with variable window
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Is there any way how to effectively generalize movmedian function to work with variable window length or local variable k-point median values, where k is vector with the same length as length of input vector (lenght(x) = lenght(k))?
Example:
x = 1:6
k = 2,3,3,5,3,2
M = movmedian_vk(x,k)
M = 1, 2, 3, 4, 5, 5.5
My naive solution looks like:
function M = movmedian_vk(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
2 Kommentare
Antworten (3)
Bruno Luong
am 23 Sep. 2024
Bearbeitet: Bruno Luong
am 23 Sep. 2024
One way (for k not very large)
x = 1:6
k = [2,3,4,5,3,2]; % Note: I change k(3) to 4
winmedian(x,k)
function mx = winmedian(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
7 Kommentare
Matt J
am 24 Sep. 2024
Bearbeitet: Matt J
am 24 Sep. 2024
When there are a small number of unique k(i), yes, yours is best. However, more generally, Bruno's is faster:
k = randi(30,1,1e5);
x = rand(1,1e5);
timeit(@() winmedianMichal(x,k))
timeit(@() winmedianBruno(x,k))
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
function mx = winmedianBruno(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
Matt J
am 23 Sep. 2024
Bearbeitet: Matt J
am 24 Sep. 2024
x = rand(1,6)
k = [2,3,3,5,3,2];
n=numel(x);
J=repelem(1:n,k);
I0=1:numel(J);
splitMean=@(vals,G) (accumarray(G(:),vals(:))./accumarray(G(:),ones(numel(vals),1)))';
cc=repelem( round(splitMean( I0,J )) ,k);
zz=min(max(I0-cc+J+1,1),n+2);
vals=[nan,x,nan];
vals=vals(zz);
I=I0-repelem( find(diff([0,J]))-1 ,k);
X=accumarray([I(:),J(:)], vals(:), [max(k),n],[],nan);
M = median(X,1,'omitnan')
Matt J
am 24 Sep. 2024
Bearbeitet: Matt J
am 24 Sep. 2024
Anyway, I will be very happy for any hint how to apply robust median filter on my use case, where separate parts of signal shoud be filtered with different filter windows (something like weighting).
If your movmedian windows are simply varying over a small sequence of consecutive intervals, then the code below shows a little bit of speed-up. It won't give the exact same output near the break points between intervals, but it should be fairly close.
x = rand(1,1e5);
k = 8000*ones(1,1e5);
k(20000:30000) =50;
k(18000:20000) =200;
k(30000:32000) =200;
timeit(@() winmedianMichal(x,k))
timeit(@() winmedianMatt(x,k))
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
%Requires download of groupConsec
%https://www.mathworks.com/matlabcentral/fileexchange/78008-tools-for-processing-consecutive-repetitions-in-vectors
function M = winmedianMatt(x,k)
M=splitapply(@(a,b){movmedian(a,b(1))}, x,k, groupConsec(k));
M=[M{:}];
end
5 Kommentare
Bruno Luong
am 25 Sep. 2024
Done; somehow this Answers forum and firefox have issue when I edit it, must use another browser.
Siehe auch
Kategorien
Mehr zu Digital Filtering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!