Most efficient way to put vector on the off-diagonal of the blocks of a block matrix
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
David Gillcrist
am 23 Mai 2023
Bearbeitet: David Goodmanson
am 24 Mai 2023
I have two vectors each of the same length, and I want to put these vectors on the diagonal parts of each block of a matrix. Let's say my two vectors are and , both are of length , I am trying to construct an matrix that looks like
For example if my vectors were v = [1 2 3 4 5 6 7 8 9 8 7 6] and u = [9 8 7 6 5 4 3 2 1 2 3 4] then I would mant a matrix that looks like
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
9 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 8 0 3 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 6 0 5 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 5 0 6 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 3 0 8 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 2 0 9 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 2 0 7 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 6;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0;
]
I would like to know what an efficient way of doing this, particularly with sparse arrays I could create this matrix.
0 Kommentare
Akzeptierte Antwort
Stephen23
am 23 Mai 2023
Bearbeitet: Stephen23
am 23 Mai 2023
v = [1,2,3,4,5,6,7,8,9,8,7,6];
u = [9,8,7,6,5,4,3,2,1,2,3,4];
L = sqrt(numel(v));
vM = reshape(v,fix(L),[]);
uM = reshape(u,fix(L),[]);
vM(end+1,:) = 0;
uM(end+1,:) = 0;
vM([2:end,1],:) = vM;
N = ceil(L).^2;
M = spdiags([uM(:),vM(:)],[-1,1],N,N);
Checking:
full(M)
0 Kommentare
Weitere Antworten (2)
David Goodmanson
am 24 Mai 2023
Bearbeitet: David Goodmanson
am 24 Mai 2023
Hi David,
MODIFIED
see Dyuman's comment to sensibly shorten this original code.
n = 4;
v = [1 2 3 4 5 6 7 8 9 8 7 6]; % length n*(n-1)
u = [9 8 7 6 5 4 3 2 1 2 3 4];
vv = [reshape(v,n-1,n); zeros(1,n)];
vv = vv(:);
vv(end) = [];
uu = [reshape(u,n-1,n); zeros(1,n)];
uu = uu(:);
uu(end) = [];
M = diag(vv,1) + diag(uu,-1)
you can cut even more lines using the code below but at the cost of transparancy, so I think Dyuman's version is the best one.
n = 4;
v = [1 2 3 4 5 6 7 8 9 8 7 6];
u = [9 8 7 6 5 4 3 2 1 2 3 4];
uv = [reshape([v u],n-1,2*n);zeros(1,2*n)];
M = diag(uv(1:n^2-1),1) + diag(uv(n^2+1:2*n^2-1),-1)
1 Kommentar
Dyuman Joshi
am 24 Mai 2023
You can use indexing to shorten the code by 2 lines -
n = 4;
v = [1 2 3 4 5 6 7 8 9 8 7 6]; % length n*(n-1)
u = [9 8 7 6 5 4 3 2 1 2 3 4];
vv = [reshape(v,n-1,n); zeros(1,n)];
vv = vv(1:end-1);
uu = [reshape(u,n-1,n); zeros(1,n)];
uu = uu(1:end-1);
M = diag(vv,1) + diag(uu,-1)
John D'Errico
am 23 Mai 2023
The most efficient way? SPDIAGS.
help spdiags
For example, to create a 6x6 sparse matrix, with an upper and lower diagonal elements as vectors of length 5, we do this:
V1 = randi(10,[5,1]); % Just some random numbers.
V2 = randi(10,[5,1]);
A = spdiags([[V1;nan],[nan;V2]],[-1,1],6,6)
full(A)
spy(A)
Note that I padded an extra element, a NaN in this case, at the beginning of V2 and the end of V1.
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!