How to vectorize the MATLAB code?

9 Ansichten (letzte 30 Tage)
Sam Yeoh
Sam Yeoh am 14 Feb. 2022
Kommentiert: Jan am 14 Feb. 2022
This is the code that I have written and I saw articles about vectorization.
N = length(a);
b = zeros(1,N - 1);
for i = 1:N-1
b(i) = a(i) + a (i + 1);
end
How should I vectorize my code in this circumstance? Any suggestions? Thank you.

Akzeptierte Antwort

Jan
Jan am 14 Feb. 2022
Bearbeitet: Jan am 14 Feb. 2022
a = rand(1, 11);
N = length(a);
b = zeros(1,N - 1);
for i = 1:N-1
b(i) = a(i) + a (i + 1);
end
% Vectorized 1:
b2 = a(1:end-1) + a(2:end);
% Vectorized 2:
b3 = conv(a, [1,1], 'valid')
% [EDITED] % Vectorized 3: Working only for even length of a!
% [EDITED] b4 = sum(reshape(a, 2, [])); % Not the same result!
% Thanks John D'Errico.
isequal(b, b2, b3)
ans = logical
1
For a = rand(1,1e6) and 100 repetitions, Matlab 2018b needs:
% Elapsed time is 0.683647 seconds. loop
% Elapsed time is 0.874940 seconds. 1:end-1 + 2:end
% Elapsed time is 0.477227 seconds. conv
You see, that vectorization is not a standard trick for accelerating code. The memory access can take more time than the loop.
  3 Kommentare
John D'Errico
John D'Errico am 14 Feb. 2022
While I gave a +1 to @Jan for the answer, b4 is incorrect.
a = rand(1, 10);
b3 = conv(a, [1,1], 'valid')
b3 = 1×9
1.0363 1.0664 0.8794 0.4572 0.8286 1.0839 0.8633 0.9137 0.8310
% Vectorized 3: Working only for even length of a!
b4 = sum(reshape(a, 2, []));
b3
b3 = 1×9
1.0363 1.0664 0.8794 0.4572 0.8286 1.0839 0.8633 0.9137 0.8310
b4
b4 = 1×5
1.0363 0.8794 0.8286 0.8633 0.8310
b4 sums the 1st and second, but NOT the 2nd and 3rd elements.
Jan
Jan am 14 Feb. 2022
Thanks, John.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by