imregdeform
Deformable registration of grayscale images or intensity volumes using total variation method
Since R2022b
Syntax
Description
The imregdeform
function uses the total variation method to
perform deformable registration of grayscale images or intensity volumes. You can use this
function to register medical images or volumes deformed due to local
transformations.
Examples
Deformable Registration of Images
Load a reference image and an image to be registered into the workspace. Convert the images to grayscale.
fixedImg = imread("hands1.jpg"); fixed = im2gray(fixedImg); movingImg = imread("hands2.jpg"); moving = im2gray(movingImg);
Display the fixed image and the moving image. Observe the deformation in the alignment of the images.
figure imshowpair(fixed,moving)
Register the moving image to the fixed image.
[dispField,reg] = imregdeform(moving,fixed,NumPyramidLevels=6,GridRegularization=0.6);
--------------------------- Pyramid Level = 6 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 1.64147 37024.85 4.19 49.62783 2 1.48633 31590.32 24.34 48.04233 3 1.63155 30339.11 18.00 46.47121 4 1.33748 29085.22 7.83 60.12520 5 1.29691 28578.16 10.20 74.34988 6 1.35689 28002.80 14.17 78.68985 7 1.36835 27701.23 7.44 65.67400 8 1.17573 27384.96 8.51 35.42655 9 1.08997 26944.82 13.44 53.24290 10 0.95153 26374.55 5.58 29.71761 11 0.91025 26169.77 2.55 26.32110 12 0.91195 25891.90 5.95 34.23311 13 1.14507 25726.65 14.50 41.34727 14 1.22759 25281.23 11.61 33.04872 15 0.97035 24703.21 7.40 34.35227 16 1.03194 24307.52 9.90 34.04009 17 1.03114 24077.92 7.69 41.98692 18 0.98282 23736.04 14.83 46.11518 19 0.95928 23317.39 14.87 37.88543 20 0.92435 22891.46 17.10 45.98425 21 0.81884 22398.19 11.15 37.09230 22 0.70854 22097.88 6.20 23.16606 23 0.65405 21979.78 3.92 20.64745 24 0.58632 21890.52 3.22 17.18440 25 0.59774 21767.81 7.38 17.62879 26 0.63929 21698.98 8.36 22.69476 27 0.50519 21574.89 2.62 15.70961 28 0.50145 21491.14 3.01 12.74984 29 0.50583 21419.94 3.16 14.86162 30 0.48495 21390.37 4.85 13.89448 31 0.46792 21363.09 1.43 13.67136 32 0.40962 21356.92 1.65 9.81103 33 0.40800 21356.83 0.18 9.50099 --------------------------- Pyramid Level = 5 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.44400 23959.26 5.30 22.96675 2 0.39054 23254.00 9.46 18.54226 3 0.36834 23134.24 5.02 22.51686 4 0.33450 23051.56 1.59 12.51227 5 0.33048 23004.59 2.58 10.00633 6 0.32744 22960.51 3.02 8.53760 7 0.35590 22882.32 6.67 25.78811 8 0.32620 22788.98 1.99 10.72627 9 0.31109 22735.69 1.69 7.66283 10 0.30765 22695.63 2.81 6.17570 11 0.30926 22686.24 1.23 7.16721 12 0.31211 22682.41 0.80 6.14514 13 0.31531 22680.85 0.64 4.67112 14 0.31613 22680.72 0.19 4.48773 --------------------------- Pyramid Level = 4 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.28145 28405.52 4.99 21.00908 2 0.26476 27597.03 9.61 12.38693 3 0.24598 27383.91 4.02 15.36024 4 0.23363 27324.84 1.62 7.73944 5 0.23838 27210.31 2.64 5.38586 6 0.23927 27069.79 3.11 8.21936 7 0.24557 26887.38 5.87 15.04406 8 0.23496 26800.32 1.50 8.34007 9 0.23145 26768.71 1.57 4.85061 10 0.23168 26719.01 2.55 6.54153 11 0.23681 26642.15 5.61 15.08833 12 0.23464 26630.58 0.24 13.59408 13 0.23266 26610.13 0.46 10.57860 14 0.23255 26601.49 0.22 9.64826 --------------------------- Pyramid Level = 3 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.16744 30346.55 7.61 9.96175 2 0.16423 30102.90 4.35 8.32035 3 0.16156 29980.10 2.71 5.30050 4 0.16202 29875.25 3.51 5.31045 5 0.16292 29776.73 4.77 7.43416 6 0.16392 29666.28 4.26 6.45343 7 0.16464 29634.29 3.28 6.47225 8 0.16468 29602.16 3.41 9.24667 9 0.16277 29597.64 2.84 4.73214 10 0.16176 29572.86 3.45 4.35966 11 0.16176 29572.86 0.00 4.35966 --------------------------- Pyramid Level = 2 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.12139 29164.12 9.06 7.14654 2 0.11765 28862.99 5.23 7.51096 3 0.11638 28735.95 3.36 5.13431 4 0.11604 28645.66 3.50 6.77245 5 0.11627 28571.44 4.39 7.44115 6 0.11643 28484.52 3.61 6.90513 7 0.11650 28430.70 2.00 4.35053 8 0.11647 28378.27 2.95 6.94753 9 0.11613 28331.36 3.26 7.69637 10 0.11584 28303.83 2.11 6.46119 11 0.11552 28262.96 2.64 4.12786 12 0.11530 28249.84 2.80 11.04359 13 0.11536 28165.72 3.59 7.07861 14 0.11575 28115.74 1.89 4.88700 15 0.11620 28076.12 2.02 7.58377 16 0.11622 28074.33 0.16 7.56146 --------------------------- Pyramid Level = 1 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.08227 31990.04 11.46 9.08694 2 0.08242 31703.92 3.95 6.42663 3 0.08259 31673.28 2.83 5.67244 4 0.08258 31592.70 1.62 2.86766 5 0.08248 31472.07 3.63 3.94960 6 0.08236 31394.89 4.08 8.77333 7 0.08236 31318.72 3.15 6.37418 8 0.08241 31284.28 2.45 7.80324 9 0.08246 31261.99 2.13 5.12845 10 0.08250 31229.44 2.73 9.01955 11 0.08251 31184.45 2.76 3.64361 12 0.08250 31134.16 2.36 4.62543 13 0.08248 31093.56 2.20 4.72334 14 0.08242 31058.02 3.06 4.89104 15 0.08241 31054.33 0.65 4.79401 16 0.08241 31043.47 4.64 4.55497 17 0.08246 30993.97 1.31 4.77205 18 0.08250 30974.60 1.80 2.70111 19 0.08252 30930.28 3.55 2.98518 20 0.08254 30888.53 3.00 6.74033 21 0.08255 30859.25 0.88 3.84308 22 0.08255 30832.77 0.33 4.47998 23 0.08256 30830.20 0.29 4.08084 24 0.08256 30822.42 0.76 3.60578 25 0.08256 30821.96 0.31 3.39638 26 0.08256 30818.17 0.43 3.08190
Display the fixed image and the registered image. Observe the alignment of the images.
figure imshowpair(fixed,reg)
Deformable Registration of MRI Volume
Load a MAT file containing a reference volume into the workspace. Convert the reference volume to data type double.
load mristack.mat
fixed = im2double(squeeze(mristack));
Create a deformed volume using local transformations.
local = fixed(160:200,100:140,:); local = imrotate(local,90); moving = fixed; moving(160:200,100:140,:) = local;
Display a slice of the fixed volume and a corresponding slice of the moving volume. Observe the deformation in the alignment of the volumes.
figure imshowpair(fixed(:,:,10),moving(:,:,10))
Register the moving volume to the fixed volume.
[dispField,reg]=imregdeform(moving,fixed,GridRegularization=0.001);
--------------------------- Pyramid Level = 3 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.00016 34081.23 4.60 79.85176 2 0.00016 27591.18 16.75 70.06876 3 0.00019 26948.09 23.68 65.83620 4 0.00018 26498.21 5.02 59.19717 5 0.00018 25872.69 8.68 43.63346 6 0.00019 25774.23 7.70 46.14477 --------------------------- Pyramid Level = 2 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.00009 24832.60 6.00 46.80394 2 0.00012 24491.93 29.78 58.92927 3 0.00014 21486.74 9.76 59.40296 4 0.00010 20100.15 7.82 36.86658 5 0.00010 19653.02 5.40 32.11689 6 0.00009 19344.57 6.25 27.88253 7 0.00009 19179.94 6.32 26.61265 8 0.00008 19105.13 6.35 25.79584 9 0.00008 19105.13 0.00 25.79584 --------------------------- Pyramid Level = 1 -------------------------------- Normalized Function local Closeness to Iteration rmse minima Step-size optimal solution 1 0.00005 22834.26 6.43 25.64158 2 0.00006 21498.26 20.85 63.44257 3 0.00007 20173.48 11.87 81.18027 4 0.00006 20039.11 21.12 51.90494 5 0.00006 19909.26 3.44 51.33763 6 0.00005 19738.00 4.92 45.68723 7 0.00005 19542.03 6.75 37.99851 8 0.00005 19430.34 7.47 30.56819 9 0.00005 19396.99 4.20 26.59914
Display the same slice of the fixed volume and the corresponding slice of the registered volume. Observe the improved alignment of the volumes.
figure imshowpair(fixed(:,:,10),reg(:,:,10))
Input Arguments
moving
— Image or volume to be registered
2-D numeric matrix | 3-D numeric array
Image or volume to be registered, specified as a 2-D numeric matrix or 3-D numeric
array, respectively. The size of moving
must be the same as the size
of fixed
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
fixed
— Reference image or volume
2-D numeric matrix | 3-D numeric array
Reference image or volume, specified as a 2-D numeric matrix or 3-D numeric array,
respectively. The size of fixed
must be the same as the size of
moving
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: [dispField,reg] =
imregdeform(moving,fixed,NumPyramidLevels=6)
registers moving
to fixed
using six pyramid levels.
GridSpacing
— Grid spacing
two-element numeric vector | three-element numeric vector
Grid spacing, specified as a two-element or three-element numeric vector.
If moving
and fixed
are 2-D grayscale
images, GridSpacing
must be a two-element vector, and its default
value is [4 4]
. If moving
and
fixed
are 3-D intensity volumes, GridSpacing
must be a three-element vector, and its default value is [4 4 4]
.
Smaller values of GridSpacing
specify a finer grid
resolution.
Data Types: double
PixelResolution
— Pixel size
two-element numeric vector | three-element numeric vector
Pixel size, specified as a two-element or three-element numeric vector. Values are in millimeters.
If moving
and fixed
are 2-D grayscale
images, PixelResolution
must be a two-element vector, and its
default value is [1 1]
. If moving
and
fixed
are 3-D intensity volumes,
PixelResolution
must be a three-element vector, and its default
value is [1 1 1]
.
Data Types: double
NumPyramidLevels
— Number of multiresolution pyramid levels
3 (default) | positive integer
Number of multiresolution pyramid levels, specified as a positive integer.
If
moving
andfixed
are 2-D grayscale images of size M-by-N, then the value ofNumPyramidlevels
must satisfy the conditionmin([M N]) > (2^NumPyramidLevels)*0.7
.If
moving
andfixed
are 3-D intensity volumes of size M-by-N-by-P, then the value ofNumPyramidlevels
must satisfy the conditionmin([M N P]) > (2^NumPyramidLevels)*0.7
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
GridRegularization
— Weighing factor for grid displacement regularization
0.11
(default) | nonnegative scalar
Weighing factor for grid displacement regularization, specified as a nonnegative scalar.
A large value for GridRegularization
can create a smooth output
displacement field, whereas a small value can create more localized
displacements.
Data Types: double
DisplayProgress
— Progress information output
true
or 1
(default) | false
or 0
Progress information output,
specified as a numeric or logical 1
(true
) or
0
(false
). Specify
DisplayProgress
as true
to display information
such as the number of iterations, normalized root mean square error (RMSE), function
local minima, step size, and closeness to optimal solution.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
Output Arguments
dispField
— Displacement field
3-D numeric array | 4-D numeric array
Displacement field, returned as a 3-D or 4-D numeric array.
If moving
and fixed
are 2-D grayscale images
of size M-by-N, the displacement field
dispField
is a 3-D numeric array of size
M-by-N-by-2, where
dispField(:,:,1)
and dispField(:,:,2)
contain
the displacements in the X- and Y- directions,
respectively. If moving
and fixed
are 3-D
intensity volumes of size
M-by-N-by-P, the displacement
field dispField
is a 4-D numeric array of size
M-by-N-by-P-by-3, where
dispField(:,:,1)
, dispField(:,:,2)
, and
dispField(:,:,3)
contain the displacements in the
X-, Y- and Z- directions,
respectively.
Data Types: double
reg
— Registered image or volume
2-D numeric matrix | 3-D numeric array
Registered image or volume, returned with the same size and data type as
moving
.
References
[1] Vishnevskiy, Valery, Tobias Gass, Gabor Szekely, Christine Tanner, and Orcun Goksel. “Isotropic Total Variation Regularization of Displacements in Parametric Image Registration.” IEEE Transactions on Medical Imaging 36, no. 2 (February 2017): 385–95. https://doi.org/10.1109/TMI.2016.2610583.
Version History
Introduced in R2022b
See Also
Functions
MATLAB-Befehl
Sie haben auf einen Link geklickt, der diesem MATLAB-Befehl entspricht:
Führen Sie den Befehl durch Eingabe in das MATLAB-Befehlsfenster aus. Webbrowser unterstützen keine MATLAB-Befehle.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)