Main Content

coth

Hyperbolic cotangent

Description

example

Y = coth(X) returns the hyperbolic tangent of the elements of X. The coth function operates element-wise on arrays. The function accepts both real and complex inputs. All angles are in radians.

Examples

collapse all

Create a vector and calculate the hyperbolic cotangent of each value.

X = [0 pi 2*pi 3*pi];
Y = coth(X)
Y = 1×4

       Inf    1.0037    1.0000    1.0000

Plot the hyperbolic cotangent over the domain -π<x<0 and 0<x<π.

x1 = -pi+0.01:0.01:-0.01; 
x2 = 0.01:0.01:pi-0.01;
y1 = coth(x1);
y2 = coth(x2);
plot(x1,y1,x2,y2)
grid on

Input Arguments

collapse all

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double
Complex Number Support: Yes

More About

collapse all

Hyperbolic Cotangent

The hyperbolic cotangent of x is equal to the inverse of the hyperbolic tangent

coth(x)=1tanh(x)=e2x+1e2x1.

In terms of the traditional cotangent function with a complex argument, the identity is

coth(x)=icot(ix).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

| | | |

Introduced before R2006a