Documentation

### This is machine translation

Mouseover text to see original. Click the button below to return to the English version of the page.

# immse

Mean-squared error

## Syntax

``err = immse(X,Y)``

## Description

example

````err = immse(X,Y)` calculates the mean-squared error (MSE) between the arrays `X` and `Y`. `X` and `Y` can be arrays of any dimension, but must be of the same size and class.```

## Examples

collapse all

```ref = imread('pout.tif'); imshow(ref)``` Create another image by adding noise to a copy of the reference image.

```A = imnoise(ref,'salt & pepper', 0.02); imshow(A)``` Calculate mean-squared error between the two images.

```err = immse(A, ref); fprintf('\n The mean-squared error is %0.4f\n', err);```
``` The mean-squared error is 353.7631 ```

## Input Arguments

collapse all

Input array, specified as a nonsparse, numeric array.

Example: `err = immse(I,I2);`

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `uint8` | `uint16` | `uint32`

Input arrays, specified as a nonsparse, numeric array.

Example: `err = immse(I,I2);`

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `uint8` | `uint16` | `uint32`

## Output Arguments

collapse all

Mean-squared error, returned as a scalar of class `double`. If the input arguments are of class `single`, `err` is of class `single`