Visualisieren von tiefen neuronalen Netzen
Darstellung des Trainingsfortschritts, Bewertung der Genauigkeit, Erläuterung von Vorhersagen und Visualisierung von Merkmalen, die von einem Bildnetz gelernt wurden
Überwachen Sie den Trainingsfortschritt mithilfe integrierter Netzgenauigkeits- und Netzverlustdiagramme. Untersuchen Sie trainierte Netze mit Visualisierungstechniken wie Grad-CAM, Okklusionsempfindlichkeit, LIME und Deep Dream.
Apps
Deep Network Designer | Entwurf und Visualisierung von Deep-Learning-Netzen |
Funktionen
Eigenschaften
ConfusionMatrixChart Properties | Confusion matrix chart appearance and behavior |
ROCCurve Properties | Receiver operating characteristic (ROC) curve appearance and behavior (Seit R2022b) |
Themen
Interpretierbarkeit
- Deep Learning Visualization Methods
Learn about and compare deep learning visualization methods. - Understand Network Predictions Using Occlusion
This example shows how to use occlusion sensitivity maps to understand why a deep neural network makes a classification decision. - Investigate Spectrogram Classifications Using LIME
This example shows how to use locally interpretable model-agnostic explanations (LIME) to investigate the robustness of a deep convolutional neural network trained to classify spectrograms. - Investigate Classification Decisions Using Gradient Attribution Techniques
This example shows how to use gradient attribution maps to investigate which parts of an image are most important for classification decisions made by a deep neural network. - Investigate Network Predictions Using Class Activation Mapping
This example shows how to use class activation mapping (CAM) to investigate and explain the predictions of a deep convolutional neural network for image classification. - Visualize Image Classifications Using Maximal and Minimal Activating Images
This example shows how to use a data set to find out what activates the channels of a deep neural network. - View Network Behavior Using tsne
This example shows how to use thetsne
function to view activations in a trained network. - Visualize Activations of a Convolutional Neural Network
This example shows how to feed an image to a convolutional neural network and display the activations of different layers of the network. - Visualize Features of a Convolutional Neural Network
This example shows how to visualize the features learned by convolutional neural networks.
Trainingsfortschritt und Leistung
- Classify Webcam Images Using Deep Learning
This example shows how to classify images from a webcam in real time using the pretrained deep convolutional neural network GoogLeNet. - Überwachen des Deep-Learning-Trainingsfortschritts
Dieses Beispiel zeigt, wie man den Trainingsfortschritt von Deep-Learning-Netzen überwachen kann. - Monitor Custom Training Loop Progress
Track and plot custom training loop progress. - Monitor GAN Training Progress and Identify Common Failure Modes
Learn how to diagnose and fix some of the most common failure modes in GAN training. - ROC Curve and Performance Metrics
Userocmetrics
to examine the performance of a classification algorithm on a test data set. - Compare Deep Learning Models Using ROC Curves
This example shows how to use receiver operating characteristic (ROC) curves to compare the performance of deep learning models.