Main Content

Attach Metadata to Models

Specify Model Time Units

This example shows how to specify time units of a transfer function model.

The TimeUnit property of the tf model object specifies units of the time variable, time delays (for continuous-time models), and the sample time Ts (for discrete-time models). The default time units is seconds.

Create a SISO transfer function model sys=4s+2s2+3s+10 with time units in milliseconds:

num = [4 2];
den = [1 3 10];
sys = tf(num,den,'TimeUnit','milliseconds');

You can specify the time units of any dynamic system in a similar way.

The system time units appear on the time- and frequency-domain plots. For multiple systems with different time units, the units of the first system are used if the time and frequency units in the Specify Toolbox Preferences for Linear Analysis Plots are auto.

Note

Changing the TimeUnit property changes the system behavior. If you want to use different time units without modifying system behavior, use chgTimeUnit.

Interconnect Models with Different Time Units

This example shows how to interconnect transfer function models with different time units.

To interconnect models using arithmetic operations or interconnection commands, the time units of all models must match.

  1. Create two transfer function models with time units of milliseconds and seconds, respectively.

    sys1 = tf([1 2],[1 2 3],'TimeUnit','milliseconds');
    sys2 = tf([4 2],[1 3 10]);
    
  2. Change the time units of sys2 to milliseconds.

    sys2 = chgTimeUnit(sys2,'milliseconds');
    
  3. Connect the systems in parallel.

    sys = sys1+sys2;

Specify Frequency Units of Frequency-Response Data Model

This example shows how to specify units of the frequency points of a frequency-response data model.

The FrequencyUnit property specifies units of the frequency vector in the Frequency property of the frd model object. The default frequency units are rad/TimeUnit, where TimeUnit is the time unit specified in the TimeUnit property.

Create a random SISO frequency-response data model with frequency data in GHz.

resp = randn(7,1) + i*randn(7,1);
freq = logspace(-2,2,7);
sys = frd(resp,freq,'FrequencyUnit','GHz');

You can independently specify the units in which you measure the frequency points and sample time in the FrequencyUnit and TimeUnit properties, respectively. You can also specify the frequency units of a genfrd in a similar way.

The frequency units appear on the frequency-domain plots. For multiple systems with different frequency units, the units of the first system are used if the frequency units in the Specify Toolbox Preferences for Linear Analysis Plots is auto.

Note

Changing the FrequencyUnit property changes the system behavior. If you want to use different frequency units without modifying system behavior, use chgFreqUnit.

Extract Subsystems of Multi-Input, Multi-Output (MIMO) Models

This example shows how to extract subsystems of a MIMO model using MATLAB® indexing and using channel names.

Extracting subsystems is useful when, for example, you want to analyze a portion of a complex system.

Create a MIMO transfer function.

G1 = tf(3,[1 10]);
G2 = tf([1 2],[1 0]); 
G = [G1,G2]; 

Extract the subsystem of G from the first input to all outputs.

Gsub = G(:,1);

This command uses MATLAB indexing to specify a subsystem as G(out,in), where out specifies the output indices and in specifies the input indices.

Using channel names, you can use MATLAB indexing to extract all the dynamics relating to a particular channel. By using this approach, you can avoid having to keep track of channel order in a complex MIMO model.

Assign names to the model inputs.

G.InputName = {'temperature';'pressure'};

Because G has two inputs, use a cell array to specify the two channel names.

Extract the subsystem of G that contains all dynamics from the 'temperature' input to all outputs.

Gt = G(:,'temperature');

Gt is the same subsystem as Gsub.

Note

When you extract a subsystem from a state-space (ss) model, the resulting state-space model may not be minimal. Use sminreal to eliminate unnecessary states in the subsystem.

Specify and Select Input and Output Groups

This example shows how to specify groups of input and output channels in a model object and extract subsystems using the groups.

Input and output groups are useful for keeping track of inputs and outputs in complex MIMO models.

  1. Create a state-space model with three inputs and four outputs.

    H = rss(3,4,3);
  2. Group the inputs as follows:

    • Inputs 1 and 2 in a group named controls

    • Outputs 1 and 3 to a group named temperature

    • Outputs 1, 3, and 4 to a group named measurements

    H.InputGroup.controls = [1 2];
    H.OutputGroup.temperature = [1 3];
    H.OutputGroup.measurements = [1 3 4];
    

    InputGroup and OutputGroup are structures. The name of each field in the structure is the name of the input or output group. The value of each field is a vector that identifies the channels in that group.

  3. Extract the subsystem corresponding to the controls inputs and the temperature outputs.

    You can use group names to index into subsystems.

    Hc = H('temperature','controls')

    Hc is a two-input, two-output ss model containing the I/O channels from the 'controls' input to the 'temperature' outputs.

    You can see the relationship between H and the subsystem Hc in this illustration.

Related Topics