Passivität und Sektorgrenzen
Analysieren von Systemen auf Passivität und beliebige Kegelsektorgrenzen
Passive Steuerung ist oft Teil der Sicherheitsanforderungen in Anwendungen wie Prozesssteuerung, Teleoperation, Mensch-Maschine-Schnittstellen und Systemnetzwerken. Passivität ist ein Spezialfall des allgemeineren Begriffs der Sektorgrenzen, zu dessen Anwendungen die absolute Stabilität von Rückkopplungssystemen mit statischen Nichtlinearitäten gehört. Control System Toolbox™ enthält Werkzeuge zur Analyse dynamischer Systeme auf Passivität und beliebige Sektorgrenzen.
Funktionen
isPassive | Check passivity of linear systems |
getPassiveIndex | Compute passivity index of linear system |
passiveplot | Compute or plot passivity index as function of frequency |
getSectorIndex | Compute conic-sector index of linear system |
getSectorCrossover | Crossover frequencies for sector bound |
sectorplot | Compute or plot sector index as function of frequency |
sectorplotoptions | Create list of relative index plot options |
Themen
Passivität
- About Passivity and Passivity Indices
A system is passive if it cannot produce energy on its own, and can only dissipate the energy that is stored in it initially. Passive control has applications such as process control, tele-operation, and human-machine interfaces. - Passivity Indices
Compute various measures of passivity for linear time-invariant systems. - Parallel Interconnection of Passive Systems
The parallel interconnection of passive systems is also passive. - Series Interconnection of Passive Systems
The series interconnection of passive systems is not necessarily passive. - Feedback Interconnection of Passive Systems
The feedback interconnection of passive systems is also passive.
Sektorgrenzen
- About Sector Bounds and Sector Indices
Sector bounds are constraints on the I/O trajectories of a system. Sector indices provide measures of how well a system’s trajectories fit into a particular sector. - Absolute Stability for Quantized System
This example shows how to enforce absolute stability when a linear time-invariant system is in feedback interconnection with a static nonlinearity that belongs to a conic sector.