MathWorks - Mobile View
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
MathWorks
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden

Videos und Webinare

  • MathWorks
  • Videos
  • Videos Homepage
  • Suche
  • Videos Homepage
  • Suche
  • Vertrieb kontaktieren
  • Testsoftware
  Register to watch video
  • Description
  • Related Resources

Optimal Neural Network for Automotive Product Development

Dr. Angela Bernardini, CITEAN

Virtual engineering technology has undergone rapid progress in recent years and has been widely accepted for commercial product development. Product design and manufacturing organizations are moving from the traditional multiple and serial test cycle approach to simulation, which solves problems and validates performances using CAE and CAD tools.

For an efficient process, it is essential that design variants can be done within a short time frame. This generally leads to a challenge when the system under study exhibits nonlinear behavior. This session introduces a new methodology based on neural networks (NNs) and genetic algorithms (GAs), which “put data to work” and provide the best possible solution for a given design based on the available data. The goal of this methodology is to provide designers with a tool that can be used to select the optimum design for a given product. This is possible thanks to the optimization of the NN itself through GA implementation based on the available training data. Genetic algorithms have been used for neural networks in two main ways: to optimize the network architecture and to train the weights of a fixed architecture.

The performance of a NN is critically dependent on, among other variables, the choice of the processing elements (neurons), the architecture, and the learning algorithm. In particular, the connection density (among neurons) determines its ability to store information and learn from it. On one hand, a reduced number of connections may disable the network to approximate the function. On the other hand, dense connections may cause overfitting. NNs are usually seen as a method to implement complex nonlinear functions using simple elementary units connected with adaptive weights. We focus on optimizing the structure of connectivity for these networks using GAs to reduce learning time and avoid CAD/CAE loops. Indeed, this implementation provides neural network topologies that, in general, perform better than random or fully connected topologies when they learn and classify new data.

Genetic operators, such as mutation and cross-over, introduce variety into the initial randomly connected population, modifying the network’s architecture and testing candidate solutions. Once the most effective NN is trained, it is possible to adjust the design parameters, with the same accuracy as FEA or testing data, but sharply reducing the simulation time: The approximate hour and an half needed to analyze critical points by FEA is reduced to few seconds using neural networks. A MATLAB graphical user interface (GUI) works as a quick design guide, where the training data for the NN is obtained from a set of automatically generated FEA analyses. To assess the effectiveness of this methodology, several practical applications are shown. As an example, the optimal preload for bolted joints is returned in a few seconds starting from bolt’s geometry, friction coefficient, and applied torque.

Recorded: 22 Jun 2010

Related Products

  • Deep Learning Toolbox

Feedback

Featured Product

Deep Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

3:48
Iris Flower Clustering with Neural Net Clustering App

Related Videos:

3:36
Wine Classification with Neural Net Pattern Recognition App
5:28
Maglev Modeling with Neural Time Series App
32:47
Challenges of Automotive Product Development: Lean...
21:50
Customizing Modeling Guideline Checks Within a Continuous...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Vertrieb kontaktieren
  • Testsoftware

Produkte

  • MATLAB
  • Simulink
  • Software für Studierende
  • Hardware-Unterstützung
  • File Exchange

Testen oder Kaufen

  • Downloads
  • Testsoftware
  • Vertrieb kontaktieren
  • Preise und Lizenzierung
  • Store

Lernen

  • Dokumentation
  • Tutorials
  • Beispiele
  • Videos und Webinare
  • Schulungen

Support

  • Hilfe zur Installation
  • Antworten
  • Consulting
  • License Center
  • Support kontaktieren

Über MathWorks

  • Jobs & Karriere
  • Newsroom
  • Social Mission
  • Vertrieb kontaktieren
  • Über MathWorks

MathWorks

Accelerating the pace of engineering and science

MathWorks ist der führende Entwickler von Software für mathematische Berechnungen für Ingenieure und Wissenschaftler.

Entdecken Sie…

  • Select a Web Site United States
  • Patente
  • Handelsmarken
  • Datenschutz
  • Datendiebstahl verhindern
  • Status von Anwendungen

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Folgen Sie uns

This website uses cookies to improve your user experience, personalize content and ads, and analyze website traffic.  By continuing to use this website, you consent to our use of cookies.  Please see our Privacy Policy to learn more about cookies and how to change your settings.