Smoothed particle hydrodynamics

An implementation of the smoothed particle hydrodynamics based on the Philip Mocz's paper
370 Downloads
Aktualisiert 23. Jul 2021

View Smoothed particle hydrodynamics on File Exchange

smoothed-particle-hydrodynamics

A MATLAB implementation of the smoothed particle hydrodynamics based on the Philip Mocz's paper, in both CPU and GPU.

By using a GPU, we can speed up the computation to about 10 times. Here, I am using the NVidia Tesla K20m. It is probably the cheapest Tesla card in second-hand markets. ;-) A normal GPU also works.

Please read Philip Mocz's paper here:
https://pmocz.github.io/manuscripts/pmocz_sph.pdf

Although the paper stated MATLAB implementation, I can only find the Python implementation in his Github repository:
https://github.com/pmocz/sph-python

These are some examples in this repository:

Example 1:
Free-falling Universitas Pertamina's logo
alt text

Example 2:
Free-falling particles arranged in a grid formation
alt text

Example 3:
More free-falling particles also arranged in a grid formation ;-)
alt text

Example 4:
Waaayy more free-falling particles also arranged in a grid formation ;-) ;-)
alt text

Additional notes:

SPHDemo2D_Ex2_NeighbourSearch_CPU.m uses a very simple neighbour search mechanism to reduce the execution time. We first sort all nodes based on their distances to the origin. Hence, the adjacent nodes are neighbours.

Contact:
manurunga@yadex.com

Zitieren als

Auralius Manurung (2024). Smoothed particle hydrodynamics (https://github.com/auralius/smoothed-particle-hydrodynamics/releases/tag/1.0), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2021a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.