Character recognition using LeNet-5

A deep model (LeNet-5) trained on the MNIST dataset is used for character recognition.
625 Downloads
Aktualisiert 6. Mai 2021

Lizenz anzeigen

The LeNet-5 model implemented in this project has 3 convolutional layers and 2 fully-connected layers. It has 62,000 training parameters, and the image input size is 32*32. This model achieved 98.48% accuracy on the MNIST test set after training on its train set. MNIST is a dataset of handwritten digits with 70,000 centred fixed-size grey-scale images. More details about the dataset are available in:

http://yann.lecun.com/exdb/mnist

Run the GUI and select your image.

Zitieren als

Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.

Mehrere Stile anzeigen
Kompatibilität der MATLAB-Version
Erstellt mit R2020b
Kompatibel mit R2019b und späteren Versionen
Plattform-Kompatibilität
Windows macOS Linux
Quellenangaben

Inspiriert von: Pre-trained 2D LeNet-5

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.0.1

The relevant paper is published.

1.0.0