Deep Learning For Time Series Data
The examples showcase two ways of using deep learning for classifying time-series data, i.e. ECG data. The first way is using continuous wavelet transform and transfer learning, whereas the second way is using Wavelet Scattering and LSTMs. The explanations of the code are in Chinese. The used data set can be download on:https://github.com/mathworks/physionet_ECG_data/
The video series (in Chinese) on this topic can be found as follows:
https://www.mathworks.com/videos/series/deep-learning-for-time-series-data.html
Zitieren als
MathWorks Student Competitions Team (2024). Deep Learning For Time Series Data (https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2), GitHub. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.2 | See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2 |
||
1.0.1 | See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.1 |
||
1.0 |