Image classification using data augmentation
A simple example of a four-class image classifier using a small dataset (320 images of flowers: 80 sample x 4 categories) and a very simple CNN, with and without data augmentation.
The main goal of this example is to demonstrate the use of the MATLAB functionality for data augmentation in image classification solutions: the augmentedImageDatastore and the imageDataAugmenter.
This example should be easy to modify and expand to the user's needs.
Notes:
- The validation accuracy improves -- from ~79% (Part 1 in the code) to ~83% (Part 2) -- using a very simple CNN, as a result of data augmentation alone.
- Interestingly enough, using a pretrained AlexNet, the validation accuracy drops -- from 100% (Part 3) to ~98% (Part 4) -- which shows that data augmentation wouldn't be necessary in this case.
Zitieren als
Oge Marques (2026). Image classification using data augmentation (https://de.mathworks.com/matlabcentral/fileexchange/68728-image-classification-using-data-augmentation), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
| Version | Veröffentlicht | Versionshinweise | |
|---|---|---|---|
| 1.1.0 | Added Parts 3 and 4 (using a pretrained AlexNet) and fixed a few bugs. |
||
| 1.0.0 |
