Image classification using data augmentation

Version 1.1.0 (3,51 MB) von Oge Marques
A simple example of a four-class image classifier using a small dataset, with and without data augmentation.
1,6K Downloads
Aktualisiert 12. Aug 2019

Lizenz anzeigen

A simple example of a four-class image classifier using a small dataset (320 images of flowers: 80 sample x 4 categories) and a very simple CNN, with and without data augmentation.

The main goal of this example is to demonstrate the use of the MATLAB functionality for data augmentation in image classification solutions: the augmentedImageDatastore and the imageDataAugmenter.

This example should be easy to modify and expand to the user's needs.

Notes:
- The validation accuracy improves -- from ~79% (Part 1 in the code) to ~83% (Part 2) -- using a very simple CNN, as a result of data augmentation alone.
- Interestingly enough, using a pretrained AlexNet, the validation accuracy drops -- from 100% (Part 3) to ~98% (Part 4) -- which shows that data augmentation wouldn't be necessary in this case.

Zitieren als

Oge Marques (2026). Image classification using data augmentation (https://de.mathworks.com/matlabcentral/fileexchange/68728-image-classification-using-data-augmentation), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2019a
Kompatibel mit R2017b bis R2019a
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und MATLAB Answers
Version Veröffentlicht Versionshinweise
1.1.0

Added Parts 3 and 4 (using a pretrained AlexNet) and fixed a few bugs.

1.0.0