Image classification using data augmentation

Version 1.1.0 (3,51 MB) von Oge Marques
A simple example of a four-class image classifier using a small dataset, with and without data augmentation.
1,6K Downloads
Aktualisiert 12. Aug 2019

Lizenz anzeigen

A simple example of a four-class image classifier using a small dataset (320 images of flowers: 80 sample x 4 categories) and a very simple CNN, with and without data augmentation.

The main goal of this example is to demonstrate the use of the MATLAB functionality for data augmentation in image classification solutions: the augmentedImageDatastore and the imageDataAugmenter.

This example should be easy to modify and expand to the user's needs.

Notes:
- The validation accuracy improves -- from ~79% (Part 1 in the code) to ~83% (Part 2) -- using a very simple CNN, as a result of data augmentation alone.
- Interestingly enough, using a pretrained AlexNet, the validation accuracy drops -- from 100% (Part 3) to ~98% (Part 4) -- which shows that data augmentation wouldn't be necessary in this case.

Zitieren als

Oge Marques (2024). Image classification using data augmentation (https://www.mathworks.com/matlabcentral/fileexchange/68728-image-classification-using-data-augmentation), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2019a
Kompatibel mit R2017b bis R2019a
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.1.0

Added Parts 3 and 4 (using a pretrained AlexNet) and fixed a few bugs.

1.0.0